

Remote sensing data for drought impact assessment

Lars Eklundh

Contributions: Feng Tian, Hongxiao Jin, Jonas Ardö, Zhanzhang Cai, Vlad Rosca

CROSSDRO Kick-off meeting Balti Jan 27-29, 2020

Sentinel 2 data for local assessments

Sentinel-2 a and b

- 13 spectral bands (Vis-NIR-SWIR)
- 10-60 m ground resolution
- 3-5 days temporal resolution

Sentinel-2 seasonal dynamics

Aragon Boyne

Mean monthly EVI2 composites during 2017-2019

Classification of cropland and forest

Note: very preliminary (no training data)

Monthly seasonal dynamics 2017-19

Comparison year by year 2017-19

Boyne basin vegetation difference 2018 vs 2017

Data preprocessing with TIMESAT

- Smoothing of irregular and noisy data
- Extraction of seasonality (phenology) parameters

http://www.nateko.lu.se/TIMESAT

Jönsson & Eklundh 2002, 2004

Continental phenology studies

Start of growing season

Phenology indicator 2000-2016 for the European Environment Agency

- 0.3 d/year Jin et al. 2017, 2019

Local phenology from Sentinel-2

Mapping the agricultural phenology Start of season End of season

Length of season

Seasonal maximum

Possible contributions to CROSSDRO

- Vegetation state at daily to monthly time step
- Phenological parameters
- Drought response for individual land units / vegetation types
- Area statistics
- Relationships with hydrological/meteorological conditions
- •

European scale satellite data processing

Data from the MODIS sensor

500 m spatial resolution, 2001 - presently

Daily data

Vegetation indices (VI) formed from reflectance bands, e.g.

NDVI = (NIR-red)/(NIR+red)

Z-score anomalies: (VI₂₀₁₈ – mean) / std

where mean and std are computed from VIs for 2000-2018

NDVI anomaly 2018

Indices for investigating vegetation drought response

Hypothesis

Vegetation index Proxy for:

NDWI response → vegetation canopy moisture

EVI2 response → vegetation productivity

PPI response → green leaf area index

drought impact severity

NDWI: normalized difference wetness index

EVI2: 2-band enhanced vegetation index

PPI: plant phenology index

NDWI anomaly 2018

EVI2 anomaly 2018

PPI anomaly 2018

NDWI for agriculture and forest in Sweden vs SPEI

Seasonal NDWI anomalies

MODIS observed LAI vs crop yield statistics

Scatter plot LAI Area and Cereal Production for Sweden

Data from EUROSTAT and MODIS.

Drought effect on carbon fluxes

Tall flux tower, Norunda, Sweden

Possible contributions to CROSSDRO

- Impact of climate signals on vegetation response
- Severity of drought impact
- Lag time of drought response
- Effects on carbon uptake, agricultural production, tree growth, water resources (streamflow)
- Recovery time
- Carry-over effects between years
- •

Thank you!

Web: http://www.nateko.lu.se/

TIMESAT: http://www.nateko.lu.se/timesat

E-mail: lars.eklundh@nateko.lu.se

Satellite vegetation index for phenology PPI: Plant Phenology Index

- Based on radiative transfer theory by Hapke (1993)
- Uses BRDF-corrected red and NIR reflectance
- Maximizes seasonal signal from photosynthetic leaf foliage

$$PPI = -K \times \ln \frac{DVI_{M} - DVI}{DVI_{M} - DVI_{Soil}}$$

DVI Difference vegetation index: $R_{NIR} - R_{red}$

 DVI_{Soil} DVI for soil

 DVI_M Maximum DVI for canopy

K Extinction coefficient

Jin and Eklundh, 2014, A physically based vegetation index for improved monitoring of plant phenology. Rem Sens Env, 152.

PPI – properties

 Insensitive to background snow

 Well correlated with GPP

Jin and Eklundh, 2014

Trend estimates 2000-2016

Trends estimated by robust panel analysis

 Ca 0.3 days earlier start of season per year Sensitivities of trend to temperature and precipitation estimated by first-order difference regression

- Strong sensitivity to spring temperatures: 2.5 d°C⁻¹
- Weak sensitivity to precipitation

Jin et al. 2019, Int. J. Biometeorology, 63, 763.

Sentinel-2 to represent GPP during drought

Spruce forest in S. Sweden.

Blue = satellite data Red = GPP from flux tower

Courtesy Hongxiao Jin

Thermal data from Landsat

