
 

 

 

 

 

 

 

 

 

Deliverable 
2.2. Cross-sectorial drought impacts 



This deliverable includes different analysis related to the cross-sectorial drought impacts in 

some of the basins involved in the project. This includes i) an evaluation of the connection 

between meteorological, hydrological and ecological droughts in the Aragón basin in the 

upper Pyrenees, ii) assessment of the influence of vegetation changes on the availability of 

water resources in the Aragón basin, iii) influence of the arterial and land drainage on 

hydrological droughts in the Boyne basin and iv) assessment of the cross-sectorial drought 

impacts in the Boyne basin using newspapers. All these analysis provide a wide picture of 

the complexity of interactions of droughts considering ecological, hydrological and 

socioeconomic systems.   



Section i)  

 

Cross-interactions of ecological and hydrological droughts in the central 

Spanish Pyrenees 

 

1. Introduction 

 

Drought is one of the most complex natural hazards given the challenges of quantification 

(Lloyd-Hughes, 2014), and the occurrence of different drought types: meteorological, 

agricultural, ecological and hydrological (Wilhite and Buchanan-Smith, 2005; Wilhite and 

Pulwarty, 2017). Drought severity strongly depends on the impacts that drought produces 

(Vicente-Serrano, 2016). Nevertheless, given the common lack of impact data, drought 

severity is usually quantified using drought indices based on different hydro-climatic 

variables (Mukherjee et al., 2018). Drought metrics are typically constructed using one or a 

combination of variables, including precipitation, atmospheric evaporative demand (Tsakiris 

et al., 2007; Vicente-Serrano et al., 2010), streamflow (Shukla and Wood, 2008; Vicente-

Serrano et al., 2012) and other usually simulated by models such as evapotranspiration and 

soil moisture (Padrón et al., 2020). These variables are commonly related to drought impacts 

(Bachmair et al., 2016, 2018; O’Connor et al., 2022; Quiring and Papakryiakou, 2003; Wang 

et al., 2016) and used to assess drought hazard probability (Domínguez-Castro et al., 2019) 

and to develop drought monitoring systems (Trnka et al., 2020; Vicente-Serrano et al., 2022).  

 

A key challenge in assessing drought severity is the variety of its impacts since droughts 

affect different environmental systems and socioeconomic sectors, usually in a cascading way 

(Vicente‐Serrano, 2021; Wilhite et al., 2007). Thus, it is common to observe a spatio-

temporal propagation of drought impacts through different systems and territories (Zhang et 

al., 2022), which makes it very difficult to evaluate the severity of a particular event and 

develop drought thresholds and early warning approaches.  

 

The effects of droughts on socioeconomic systems are widely recognized as being highly 

complex. Less recognized is the complexity of impacts for natural systems. Anomalies in 

climate conditions may cause a decrease in soil moisture and runoff (Barker et al., 2016; 

Peña-Gallardo et al., 2019; Tian et al., 2018; Yuan et al., 2020), with knock-on consequences 

for vegetation given water consumption by plants (Ukkola et al., 2016; Zeng et al., 2018). 

Thus, previous studies suggest that the partitioning of precipitation between vegetation 

consumption and runoff could affect the severity of hydrological droughts downstream (Orth 

and Destouni, 2018).  

 

Moreover, different studies suggest that increases in vegetation coverage contributes to 

decreases in water yield at the basin scale (Filoso et al., 2017; Hoek van Dijke et al., 2022; 

Teuling et al., 2019), particularly during dry years (Vicente-Serrano et al., 2021a). The 

effects of these cross-interactions between vegetation effects and water resources availability 

are not well understood in regulated hydrological basins given dam management and the 

seasonality of water demands.  

Although interactions between vegetation and hydrological systems have been recognized 

when determining streamflow trends, there is limited knowledge on how vegetation 



characteristics and different hydrological cycle components (e.g., soil moisture, streamflow) 

respond to meteorological drought, and how droughts propagate to different components of 

environmental and hydrological systems. These issues are challenging to address as the focus 

is not on long-term changes (e.g. land cover changes) but on the temporal variability of 

different vegetation and hydrology metrics at time scales from months to years. For some of 

these metrics (e.g., soil moisture, leaf area, vegetation production), observations are not 

available for the long-term and models are required to generate data to analyse cross-drought 

interactions. 

 

Meteorological droughts usually reduce vegetation activity and growth in natural ecosystems 

(Hsiao, 1973), but also the availability of water in the soil, rivers and reservoirs. 

Nevertheless, we hypothesize a differential effect of meteorological droughts on vegetation 

and hydrological systems. Moreover, although long-term vegetation changes may have an 

effect on streamflow, the impact of interannual vegetation variability on water resources is 

likely to be small.  

 

In this study we model the water cycle and assessed ecological processes in a case study 

basin located in the Spanish central Pyrenees. The water resources generated in the basin are 

very important for maintaining irrigated agriculture downstream (López-Moreno et al., 2004; 

Vicente‐Serrano, 2021). In the last decades, land use has been drastically transformed in the 

basin as consequence of human depopulation and the abandonment of mountain agriculture 

and livestock. This has resulted in natural revegetation of the landscape with important 

morphodynamic and ecohydrological consequences (García-Ruiz et al., 2015), causing a 

substantial decrease in water resources (Beguería et al., 2003; López-Moreno et al., 2011). In 

addition, there is some sensitivity of natural ecosystems such as forests to drought in the 

region (Camarero et al., 2011; Peguero-Pina et al., 2007).  

 

The objective of this study is to analyse in detail how meteorological droughts differentially 

affect hydrological system components and ecological variables, and the possible interactions 

and links between ecological and hydrological drought conditions. 
 

2. Study area 

 

The upper Aragón basin is located in the Central Spanish Pyrenees (Fig. 1), with a total area 

of 2181 km
2
. There are large topographic gradients in the basin, with elevations from 420 to 

2883 m.a.s. l. The basin receives annual rainfall totals exceeding 1500 mm in the 

northernmost sector, declining to 800 mm in the inner depression. There is a summer dry 

season with higher precipitation totals recorded in spring and autumn. The mean annual air 

temperature is 10 °C, and snow cover is recorded from December to April (López-Moreno et 

al., 2020; López-Moreno and García-Ruiz, 2004). The basin contains a large reservoir, the 

Yesa reservoir with a capacity of 446.8 hm3, located at the outlet. It provides water resources 

for irrigation to the Bardenas region (81,000 has), located 80 km to the South (López-Moreno 

et al., 2004). 



 

Figure 1: Location of the study area, topography and hydrological network, including the 

Yesa reservoir. 

Vegetation cover in the upper basin is characterized by the dominance of conifers (e.g. Pinus 

sylvestris L., Pinus uncinata Ram., Abies alba Mill., Pinus nigra J.F. Arn.) and hardwood 

species (e.g. Fagus sylvatica L., Quercus faginea Lam.), while shrubs dominate the 

understory (e.g., Buxus sempervirens L.) and are distributed on steep slopes and poor soil 

areas (García-Ruiz et al., 2015). Vegetation cover in the basin has been strongly impacted by 

human activities. Historically, cultivated areas were found below 1600 m a.s.l. in valley 

bottoms, perched flats, and steep, south-facing hillslopes, which were managed even under 

shifting agriculture systems (Garcia-Ruiz and Lasanta-Martinez, 1990). The basin has 

undergone a land cover transformation in the 20
th

 century, due to rural depopulation (Garcia-

Ruiz and Lasanta-Martinez, 1990), resulting in a gradual natural revegetation process 

(Lasanta-Martínez et al., 2005; Sanjuán et al., 2018). Since the 1960s, vegetation changes 

have been characterized by secondary succession, with coniferous forests being replaced by 

mixed and broadleaf forests and some croplands and grasslands being invaded by shrubs and 

conifers.  

 

3. Data and methods 

3.1. Data  

 

Two different climate datasets were used in this study. First, we employ daily precipitation 

and temperature series from available meteorological stations in the basin (14 series of daily 

precipitation and daily maximum and minimum temperatures from 1970 to 2020). These 

series were used to run the hydro-ecological model described in section 3.2, which requires 

daily meteorological data. Second, we employ weekly gridded climate data a spatial 

resolution of 1.1 km, averaged over the whole basin (Vicente-Serrano et al., 2017). The 

variables contained in the weekly climate data were precipitation, maximum and minimum 

temperature, relative humidity, solar radiation and wind speed. Atmospheric Evaporative 

Demand (AED) necessary to calculate some of the drought metrics was calculated using the 

FAO-56 Penman-Monteith equation (Pereira et al., 2015).      



Data on surface flows and storage levels for the Yesa reservoir were obtained from the Ebro 

Basin Management Agency (Confederación Hidrográfica del Ebro; http://www.chebro.es/), 

and includes monthly inflows into the reservoir and downstream releases (i.e. to the Aragón 

River and the Bardenas channel). Inflows are primarily influenced by climatic conditions 

since there is no other regulation upstream, while all other hydrological variables (Yesa 

storage, Bardenas channel and the Aragón flows downstream Yesa) largely depend on water 

management.  

 

To validate vegetation variables simulated by the model we used tree-ring width data 

collected from six representative tree species listed above in the study area description. Data 

from 37 sites with forest growth were used in this work. Overall, the tree-ring width data 

were processed using dendrochronological methods (Fritts, 1976). Further details of this 

processing can be found in Vicente-Serrano et al. (2021b). We also used satellite derived 

Normalized Difference Vegetation Index (NDVI) from 1981 to 2020 at a biweekly scale 

obtained from the fusion of a NOAA-AVHRR NDVI dataset from 1981 to 2015 (Vicente-

Serrano et al., 2020) and the MODIS NDVI dataset (Huete et al., 2002). NDVI data were 

used to evaluate the Leaf Area Index (LAI) output simulated by the eco-hydrological model. 

 

Finally, we used land cover and topography information necessary for the modelling. We 

used a 25 m spatial resolution digital elevation model to describe the topographical features 

of the study area. Forest and land-cover types were obtained from the Spanish National 

Forest Map and the Third National Forest Inventory (period 2006–2016). Soil classes were 

taken from the European Soil Database (available at http://eusoils.jrc.ec.europa.eu).   

 

3.2 Eco-hydrological modelling 

We used the RHESSys hydro-ecological model (Tague and Band, 2004) to model the eco-

hydrological processes in the basin from 1970 to 2020. RHESSys couples an ecosystem 

carbon cycling model with a spatially distributed hydrology model to simulate integrated 

water, carbon and nutrient cycling and transport over complex terrain at small to medium 

scales. More recent refinements of energy, moisture and carbon cycling model are described 

on RHESSys website (https://github.com/RHESSys/RHESSys). We used the model to obtain 

reliable estimates of variables like soil moisture, net primary production and leaf area, which 

are not available from observations for the whole period considered in this study. The 

RHESSys model has been previously used to simulate hydrological and plant processes in 

different vegetation and basin types including mountain areas (see review in Chen et al., 

2020).  

 

Soil parameters in RHESSys typically require calibration since soil and geologic inputs do 

not account for complex controls on drainage rates such as hillslope scale preferential flow 

path distributions. The following four parameters were calibrated: (i) depletion of hydraulic 

conductivity with depth (m); (ii) hydraulic conductivity in saturated soils (K); (iii) infiltration 

through macropores (gw1); and (iv) lateral water fluxes from hillslopes to the main channel 

(gw2). Parameters were selected using a Monte-Carlo procedure based on 1600 simulations 

run. Parameters that produced monthly streamflow estimates that gave a Nash–Sutcliffe 

(NSE) efficiency coefficient > 0.7 where retained. 

 

Figure 2 shows the monthly evolution of different key variables in the basin simulated by 

RHESSys for the period 1970-2018. Validation of model simulations was undertaken using 

http://www.chebro.es/


observed streamflow data, the average tree-ring width of the samples available in the basin 

(see 3.1) and the NDVI data from NOAA-AVHRR and MODIS satellites. Figure 3 shows the 

relationship between the average annual tree-ring growth and the cumulative NPP recorded at 

different time-scales (1-24 months), the evolution of the observed and simulated monthly 

streamflow and observed NDVI and simulated LAI in the basin. NPP shows a correlation of 

0.53 with the 10-month NPP in September, which suggests a good agreement with the tree 

growth. In addition,  agreement between simulated and observed streamflow is also high (r = 

0.79), with the model performing well during periods of high and low flows. Temporal 

variability of the simulated LAI shows high agreement with the NDVI (r = 0.84), which 

suggests that the model simulated variables show a reasonable robustness and can be used for 

comparisons to observations.    

 

Figure 2. Observed (red) and modelled streamflow (blue) and modelled 

eco-hydrological variables in the Aragon 

 



 

Figure 3. Validation statistics based on the comparison of simulated data of streamflow, NPP 

and LAI with observed streamflow, tree ring growth and NDVI. 

 

3.3. Drought index calculations 

To assess the influence of meteorological droughts on hydrological and ecological variables, 

we used the Standardized Precipitation Index (SPI) (McKee et al., 1993) based on 

precipitation, the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-

Serrano et al., 2010) based on the difference between Precipitation and AED, the 

Standardized Evapotranspiration Deficit Index (SEDI) (Kim and Rhee, 2016), based on the 

difference between actual evapotranspiration (Eta) and AED, the Standardized Precipitation 

minus Evapotranspiration (SPET) and the Evaporative Demand Drought Index (EDDI) 

(Hobbins et al., 2016), which is based on the AED. The hydrological and ecological variables 

obtained from the hydro-ecological modelling (soil moisture, NPP and LAI) and from 

observations (streamflow, reservoir storages and outflows) were also standardized at time 

scales from 1 to 36 months. For this purpose, we used the probability distribution that showed 

the best fit with the monthly series of each variable and time scale, following the procedure 

used to calculate the Standardized Streamflow Index (SSI) (Vicente-Serrano et al., 2012).   

 

3.4. Analysis 

We calculated the Pearson’s correlation (r) between de-trended drought indices at time scales 

between 1 and 36 months. Correlations were calculated for each monthly series to determine 

the month and timescale that meteorological drought has greatest influence on other 

A) B)

C)

D)



variables. We also calculated partial correlations (Baba et al., 2004) to determine the 

independent role of each metric on the others, thus allowing analysis of the propagation of 

drought effects across systems and the most important effects among  different variables. 

 

4. Results 

4.1 Influence of meteorological drought on eco-hydrological variables 

 

Figure 4 shows the correlations between the values of SPI obtained at time-scales from 1 to 

36 months and soil moisture, LAI and NPP from RHESsys simulations aggregated over the 

basin and observed streamflow, reservoir storages and outflows. The results show strong 

correlations between SPI and soil moisture at time scales longer than five months for the 

majority of months. Correlations with LAI are weak and statistically non-significant but there 

are significant correlations between NPP and SPI in summer months. Correlations with 

streamflow are strong at short time scales (1-5 months), particularly during the winter season. 

Correlations of SPI with reservoir storages and outflows are also strong and statistically, with 

the strongest correlations recorded at time scales between five and ten months.  

 

 

Figure 4. Monthly Pearson’s r correlations between the basin Standardized Precipitation 

Index (SPI) and different hydrological and ecological variables. Dotted lines frame months 

and time-scales in which the correlations are statistically significant. 

 

Correlations of each variable with SPEI and the standardized difference between 

Precipitation and Et are similar to those for SPI (Figures 5 and 6). Nevertheless, the 

correlations between SEDI and the different eco-hydrologic variables show interesting 

differences (Figure 7). The first is related to the soil moisture which shows strongest positive 

correlations with SEDI during the summer months at time scales between 4 and 12 months. 

LAI also shows positive correlations with SEDI, statistically significant from May to 

September for longer time scales (15-20 months). There are also statistically significant 

positive correlations between SEDI and NPP from June to September at time scales between 

1 and 10 months. For hydrological variables (streamflow, reservoir storages and outflows) the 



strongest correlations with SEDI are found during the summer months, showing differences 

with the other drought indices.  

 

 

Figure 5. Monthly Pearson’s r correlations between the basin Standardized Precipitation 

Evapotranspiration Index (SPEI) and different hydrological and ecological variables. Dotted 

lines frame months and time-scales in which the correlations are statistically significant. 

 

Figure 6. Monthly Pearson’s r correlations between the basin Standardized difference 

between Precipitation and Evapotranspiration and the different hydrological and ecological 

variables. Dotted lines frame months and time-scales in which the correlations are 

statistically significant. 

 



 

Figure 7. Monthly Pearson’s r correlations between the basin Standardized 

Evapotranspiration Deficit Index (SEDI) and different hydrological and ecological variables. 

Dotted lines frame months and time-scales in which the correlations are statistically 

significant. 

 

4.2 Relationship between different eco-hydrological variables recorded on different time-

scales 

 

Figure 8 shows the correlations between LAI anomalies recorded at time scales between 1 

and 36 months and other eco-hydrological variables. The different plots show very weak 

correlations of LAI with other metrics, with the exception of NPP, where long time scales of 

LAI show a positive correlation with NPP. Standardized values of NPP show positive and 

significant correlations with soil moisture in summer months, especially at short time scales, 

and also with streamflow and reservoir storages and outflows, suggesting that higher values 

of carbon uptake in the basin are in agreement with higher water generation and availability 

(Figure 9). Correlations between soil moisture and different hydrological variables are also 

significant, especially for soil moisture anomalies at short time-scales, and particularly during 

the summer season (Figure 10). Correlations between streamflow and reservoir storages and 

outflows are in general strong in all months, but particularly during the winter season. 

Nevertheless, there are some particularities. While correlations between streamflow and 

reservoir storages are strong between June and August, weaker correlations aree found with 

outflows for the same months (Figure 11). Finally, the relationship between the standardized 

reservoir storages and the outflows is strong, especially at short time-scales and from July to 

December (Figure 12).   



 

Figure 8: Monthly Pearson’s r correlations between the basin Standardized LAI and the rest 

of hydrological and ecological variables. Dotted lines frame months and time-scales in which 

the correlations are statistically significant. 



 

Figure 9: Monthly Pearson’s r correlations between the basin Standardized NPP and the rest 

of hydrological and ecological variables. Dotted lines frame months and time-scales in which 

the correlations are statistically significant. 



 

Figure 10: Monthly Pearson’s r correlations between the basin Standardized Soil Moisture 

Index (SSMI) and the rest of hydrological variables. Dotted lines frame months and time-

scales in which the correlations are statistically significant. 

 

 

Figure 11: Monthly Pearson’s r correlations between the basin Standardized Streamflow 

Index (SSI) and the rest of hydrological variables. Dotted lines frame months and time-scales 

in which the correlations are statistically significant. 

  



 

Figure 12: Monthly Pearson’s r correlations between the basin Standardized reservoir 

storages calculated at time scales from 1 to 36 months and the standardized water outflows. 

Dotted lines frame months and time-scales in which the correlations are statistically 

significant. 

 

 

4.3. Isolation of the role of different interactions 

Partial correlations between EDDI, SPI, LAI, NPP and SSMI show that variations in soil 

moisture are mostly determined by precipitation variability, with a small role played by 

variability in AED and vegetation variables (NPP and LAI) (Figure 13). NPP is mostly 

dependent on soil moisture conditions during summer whereas the independent roles of AED, 

precipitation and LAI on NPP are small (Figure 14). LAI variability is most strongly 

connected with NPP at longer time scales, meaning that the previous year’s NPP may have an 

important influence on LAI of the following year (Figure 15). The influence of climate, soil 

moisture, NPP and LAI variability on streamflow shows some interesting patterns. First, the 

ecological variables LAI and NPP do not appear to influence streamflow variability when the 

influence of other variables is removed. The main independent role is associated with 

precipitation, particularly from September to May. During the summer months SSMI is the 

most important variable of those considered in explaining interannual streamflow variability 

(Figure 16). For reservoir storage precipitation during the cold season is the primary control 

variable, principally at long time scales. By contrast, at shorter time scales reservoir storage is 

heavily influenced by streamflow and soil moisture (Figure 17). Finally, the outflows are 

mostly controlled by reservoir storages throughout the year, especially in summer months, 

but outflows are more affected by streamflow than by reservoir storages in some winter 

months. In addition, outflows are strongly determined by precipitation recorded over long 

time scales (Figure 18).   



 

Figure 13: Monthly partial correlations between the basin Standardized Soil Moisture Index 

(SSMI) and the variables that may have a role on it (EDDI, SPI, LAI and NPP). Dotted lines 

frame months and time-scales in which the correlations are statistically significant. 

 

Figure 14: Monthly partial correlations between the basin Standardized NPP and the variables 

that may have a role on it (EDDI, SPI, SSMI and NPP). Dotted lines frame months and time-

scales in which the correlations are statistically significant. 



 

Figure 15: Monthly partial correlations between the basin Standardized 

NPP and the variables that may have a role on it (EDDI, SPI, SSMI and 

LAI). Dotted lines frame months and time-scales in which the correlations 

are statistically significant. 

 

 



Figure 16: Monthly partial correlations between the basin Standardized Streamflow Index 

(SSI) and the variables that may have a role on it (EDDI, SPI, SSMI, LAI and NPP). Dotted 

lines frame months and time-scales in which the correlations are statistically significant. 

 

Figure 17: Monthly partial correlations between the standardized reservoir storages at Yesa 

reservoir and the variables that may have a role on it (EDDI, SPI, SSMI, SSI, LAI and NPP). 

Dotted lines frame months and time-scales in which the correlations are statistically 

significant.  



Figure 18. Monthly partial correlations between the basin Standardized OUTFLOWS and the 

variables that may have a role on it (EDDI, SPI, SSMI, SSI, LAI and NPP AND 

RESERVOIR STORAGES). Dotted lines frame months and time-scales in which the 

correlations are statistically significant. 

5. Discussion and conclusions 

This study analyzed the relationship between different drought metrics that provide 

information meteorological, hydrological and ecological drought severity in a mountain basin 

in the central Spanish Pyrenees with the purpose of determining: i) the possible propagation 

of drought conditions between systems and ii) to identify possible cross-interactions among 

hydrological and ecological drought conditions. Such assessments are important for the basin 

given that water resources generated are widely used downstream for irrigation agriculture 

and urban supply (López-Moreno et al., 2004; Vicente‐Serrano, 2021). 

 

First, we analyzed the response of hydrological and ecological metrics to the variability in 

meteorological droughts, showing that the main response is recorded through precipitation 

with other variables (e.g., the actual evapotranspiration -Et-, and atmospheric evaporative 

demand –AED-) showing a smaller influence. This behavior is not specific to the Aragon 

basin, as different studies have shown that precipitation is the main meteorological variable 

controlling the temporal variability of streamflow worldwide (Berghuijs et al., 2017; Vicente-

Serrano et al., 2019; Yang et al., 2018). Although AED influences long term trends and 

temporal variability of surface water resources in Spain (Vicente-Serrano et al., 2014), its 

role is still small in comparison to precipitation variability. An interesting finding of this 

study is that Et does not appear to be important in explaining variability in soil moisture and 

streamflow since the magnitude and seasonality of correlations using Precipitation minus Et 

are similar to those using SPI, which is only based on precipitation. Some studies in central 

Europe (Teuling et al., 2013) have suggested that land ET could have an important role in 

depleting soil moisture and increasing the severity of hydrological droughts. Thus, Et can be 

very important in determining the partitioning of total precipitation between blue and green 

water during drought periods (Orth and Destouni, 2018). Et does play an important role in 

explaining the trend of water resources in the Pyrenees (Beguería et al., 2003; López-Moreno 

et al., 2011) as a consequence of rural abandonment and land cover changes characterized by 

natural revegetation (García-Ruiz et al., 2015). Moreover, the influence of increased Et on 

streamflow is most relevant during the driest years (Vicente-Serrano et al., 2021a). 

Nevertheless, in this study we found that in terms of explaining interannual variability of the 

hydrological and ecological metrics considered, Et plays a smaller role than precipitation, 

likely due to the fact that AED is smaller in this cold upland region (Vicente-Serrano et al., 

2007).   

 

An important finding of our study is the very differential response of ecological and 

hydrological metrics to meteorological drought. Ecological metrics are less sensitive to 

meteorological drought in comparison to the hydrological metrics analysed. This is common 

in cool and humid areas where water availability is usually sufficient to maintain vegetation 

activity and growth even in the driest years (Vicente‐Serrano, 2021). Although some previous 

studies have shown a response of tree growth to drought variability in some species of the 

upper Aragón basin (Camarero et al., 2011; Gazol et al., 2018a), the response is much less 

than found in the nearby semiarid areas of the Ebro basin (Pasho et al., 2011), where tree 

species respond very differently (Vicente‐Serrano, 2021). These results are not likely to be 

biased by model simulations since we find that summer NPP is correlated with precipitation 

recorded in the previous months. Nevertheless, the response of LAI to meteorological 



drought is very small and not statistically significant and cannot be related to the variables 

obtained by the hydro-ecological simulation. Thus, using remote sensing measurements of 

vegetation activity, which are highly related to the leaf area (Carlson and Ripley, 1997), and 

tree-ring width measurements, as metric of tree growth and carbon uptake, the response is 

always greater between climate indices and tree growth, independent of the forest type 

considered (Gazol et al., 2018b; Peña-Gallardo et al., 2018). This suggests a low sensitivity 

of vegetation activity and leaf area to climate variability in the upper Aragón basin, with 

plants optimizing respiration and photosynthesis under periods of water deficit, while carbon 

uptake may be constrained by limited water conditions in summer months, as suggested by 

the response of NPP.  

 

The influence of meteorological drought conditions is much greater on hydrological 

subsystems of the basin (including soil moisture), with water availability strongly determined 

by the interannual variability of precipitation, although the time-scales of response vary as 

expected (Barker et al., 2016; Wang et al., 2016).  

 

A novel approach of our study has been the assessment of different meteorological, ecologic 

and hydrologic metrics in order to determine relationships and cross-interactions between 

them. Previous studies have suggested very important role for vegetation dynamics in 

explaining changes in runoff generation of Spain (Beguería et al., 2003; Martínez-Fernández 

et al., 2013). In our study domain, experimental studies have shown that runoff generation is 

strongly determined by the percentage of vegetation coverage (García-Ruiz et al., 2008). 

Nevertheless, although long-term changes in vegetation plays a very important role in 

determining trends in water resources, the role of interannual variability in plant conditions 

seems to be small as our results suggest. This means that years characterized by high 

vegetation activity and growth do not have a negative effect on water availability in the basin. 

This is likely linked to the similar influence of climate variability on ecological and 

hydrological droughts, as higher precipitation cause positive anomalies in both metrics. Thus, 

although in humid years vegetation growth would be higher and Et would increase given 

higher photosynthesis, water availability would be sufficient to maintain positive anomalies 

in the surface water resources in the basin. The connection between different hydrological 

drought metrics in the basin is very strong and modulated by the seasonal response to 

precipitation and the reservoir management. 

 

In conclusion, the effect of meteorological drought variability in the upper Aragón basin is 

much stronger in hydrological systems than in ecological systems. Indeed, we find little 

evidence for a strong role of vegetation in influencing hydrological drought variability in the 

basin at interannual timescales. These findings are highly relevant for evaluating how 

ecological and hydrological droughts are related in complex hydrological basins. 
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Section ii)    
 

Increased vegetation in mountainous headwaters amplifies water stress during dry 

periods 

 

1. Introduction 

The partitioning of precipitation between blue water, defined as runoff generation, and green 

water, representing water consumption by vegetation, determines the availability of surface 

water resources for human activities and freshwater ecosystems (Rulli et al., 2013). Green 

water is the largest fraction globally (Wang & Dickinson, 2012), but is challenging to 

quantify (Mueller et al., 2013). Modeling studies suggest a general increase in green water in 

recent decades, as a consequence of higher plant leaf area (Forzieri et al., 2020; Zeng et al., 

2018), longer vegetative periods (Lian et al., 2020), and greater atmospheric evaporative 

demand (AED) (Vicente-Serrano et al., 2020).  

The total vegetation coverage controls the relationship between total evaporation and total 

precipitation at the catchment scale (Zhang et al., 2001). This would explain how 

hydrological processes are impacted by changes in leaf area index and plant biomass 

(Forzieri et al., 2020; Zeng et al., 2018) and the replacement of plant species through 

secondary succession (Leuschner & Rode, 1999). Studies indicate that reduced tree coverage 

increases runoff generation after disturbances (Bosch & Hewlett, 1982) since after reduction 

of the dominant vegetation of a catchment, evaporation is usually reduced (Anderegg et al., 

2016; Wine et al., 2017; Winkler et al., 2017). Overall, re-afforestation practices and natural 

secondary succession reduce runoff production (Filoso et al., 2017), although the magnitude 

of change is highly dependent on the vegetation types and the environmental conditions, such 

as average precipitation (Brown et al., 2005) and forest age (Teuling & van Dijke, 2020).  

In southern Europe, different studies have shown a general reduction of streamflow in recent 

decades (Gudmundsson et al., 2017; Lorenzo-Lacruz et al., 2012; Stahl et al., 2010). Land 

abandonment and/or re-afforestation have resulted in a large increase in vegetation coverage 

in the region's headwaters (Lasanta-Martínez et al., 2005; Lasanta et al., 2017; Sanjuán et al., 

2018) and different studies have stressed the fundamental role of higher plant transpiration in 

explaining streamflow trends in the region (García-Ruiz et al., 2011; Teuling et al., 2019; 

Vicente-Serrano et al., 2019). Thus, in the Mediterranean mountainous areas of Spain, the 

increase in the forest surface is the most plausible explanation for streamflow reductions in 

the headwaters (Beguería et al., 2003; Buendia et al., 2016; Martínez-Fernández et al., 2013; 

Morán-Tejeda et al., 2012).  

Unraveling the interaction between vegetation and climate variability, as well as their impact 

on the partitioning of precipitation into blue and green water, is a high-priority research topic. 

While an increase in green water consumption has been linked to greening (Forzieri et al., 

2020; Ukkola et al., 2016), it is unclear how water availability and seasonality affect the 

dependency between vegetation changes and precipitation partitioning. Although some 

studies have identified a dominance in the green water in response to drought events (Orth & 

Destouni, 2018), particularly during warm years (Mastrotheodoros et al., 2020), there is little 

understanding of the interaction between vegetation changes and the interannual and 

intraanual variability of climate conditions to explain anomalies and long-term streamflow 

trends.  



We hypothesize that dominant re-vegetation changes in mountain Mediterranean areas of 

southern Europe have been the primary cause of the large decline in streamflow observed in 

recent decades. Nevertheless, the role of these vegetation changes in the partition of 

precipitation between blue and green water is dependent on interannual climate variability, 

with the role being stronger during dry years when the system has less available water. 

Moreover, the role of the vegetation changes in the blue and green partition would be 

seasonally dependent, with the role of vegetation being stronger in summer dry season, when 

vegetation is more active.  

Here, we analyse the influence of vegetation changes on blue water generation in a humid 

natural basin (the upper Aragón basin,) over the last six decades (1962-2019). This basin, 

located in the Spanish Pyrenees (2181 km
2
), is characterized by intense secondary succession 

toward more mature vegetation communities, representing a “typical” example of recent 

observed vegetation changes in mountainous areas of southern Europe (García-Ruiz et al., 

2011; Lasanta et al., 2017). Accordingly, results of this work can be applied to a broad spatial 

region in Southern Europe, where water scarcity is a serious socioeconomic and 

environmental issue.  

 

2. Description of the study area 

The Upper Aragón River basin covers an area of 2181 km
2
 (Figure 1), with the most elevated 

areas located in the north (Collarada Peak, 2886 m). The Aragón River flows north–south 

across the Paleozoic area (limestone, shale and clay), the Inner Sierras (limestone and 

sandstone) and the flysch sector before entering the Inner Depression (marls) and flowing 

westward. The average annual precipitation is 1303 mm, although it can reach 1500 mm in 

the most elevated sites and falls below 800 mm in the Inner Depression. Precipitation is 

mostly recorded between October and May with a summer dry season characterized by 

isolated rainstorm events caused by convective processes. Following the FAO-56 Penman-

Monteith equation (Pereira et al., 2015), the annual atmospheric evaporative demand (AED) 

may reach 1045 mm. From December to April, snow cover is generally permanent above 

elevations of 1500 m a.s.l. (López-Moreno et al., 2020). Long-term annual streamflow is 

1318 Hm
3
. Winter flow is low due to snow accumulation, while the peak flow of 172.9 Hm

3
 

occurs in April, corresponding to the maximum precipitation and snowmelt. Rather, August 

is the month with the lowest river flow (29.3 Hm
3
). The Yesa reservoir, with a capacity of 

446.8 hm
3
, is an important water management infrastructure because it supplies water for 

irrigation to the Bardenas region (81,000 ha) located 80 km to the south of the basin (López-

Moreno et al., 2004; Vicente‐Serrano, 2021). Also, it supplies water to Zaragoza, the most 

populated city (700,000 inhabitants) in the Ebro basin.  

 



 

Figure 1: a) Physiography and main river network in the upper Aragón basin, b) land cover 

changes distribution and changes between the decades of 1960s and 2010s and c) dominant 

process of vegetation succession phases and lapse times in the study domain. 

 



Vegetation cover in the upper Aragon basin is characterized by the dominance of conifers 

(e.g. Pinus sylvestris L., Pinus uncinata Ram., Abies alba Mill., Pinus nigra J.F. Arn.) and 

hardwood species (e.g. Fagus sylvatica L., Quercus faginea Lam.), while shrubs dominate the 

understory (e.g., Buxus sempervirens L.) or distributed over the surfaced slopes and in areas 

of poor soil (J.M. García-Ruiz et al., 2015). Winter cereals (mainly barley and wheat) 

dominate in the Inner depression. Vegetation cover in the basin has been strongly impacted 

by human activities. Historically, cultivated areas were found below 1600 m a.s.l. in valley 

bottoms, perched flats, and steep, south-facing hillslopes, which were managed even under 

shifting agriculture systems (Garcia-Ruiz & Lasanta-Martinez, 1990). The Aragón basin has 

undergone a land cover transformation in the 20
th

 century, due to depopulation (Garcia-Ruiz 

& Lasanta-Martinez, 1990). The abandonment of agriculture, which represented 30% of the 

study area (Beguería et al., 2003), and livestock practices have resulted in a gradual natural 

revegetation process (Lasanta-Martínez et al., 2005; Sanjuán et al., 2018). This process was 

characterized by rapid changes between succession phases (Kouba et al., 2012; Lasanta-

Martínez et al., 2005; Molinillo et al., 1997). In addition, some areas were reforested during 

the 1950s and 1960s (Ortigosa et al., 1990). Since the 1960s, vegetation changes have been 

characterized by dominant secondary succession, with coniferous forests being replaced by 

mixed and broadleaf forests. Currently, these biotas make up the main land cover types in the 

basin (Figure 1). This process has been accompanied by forest densification and foliar 

coverage increase (Vicente-Serrano et al., 2006), explaining a large increase in satellite 

photosynthetic activity since the 1980s (Figure 2) and representing a common change in the 

majority of the Mediterranean mountainous areas (J.M. García-Ruiz et al., 2011).     

 

Figure 2: Evolution of the average standardized monthly and seasonal NDVI over the upper 

Aragón basin from 1981 to 2019. The reference period to obtain standardized values is the 

common 2000-2014. Blue solid lines represent the NOAA-AVHRR NDVI series and dark-

blue solid lines the MODIS NDVI series. Dashed lines are the regression fits obtained by 

means of least-squares. 

 

 

3. Material and methods 



3.1. Data  

Daily streamflow data for the basin was provided by the Ebro Basin Management Agency 

(CHE) (Confederación Hidrográfica del Ebro, http://www.chebro.es/; last accessed 1 

February 2021). We derived the streamflow (in cubic hectometers, Hm
3
) generated over the 

entire basin draining to the Yesa reservoir, which has been calculated by the CHE since 1962 

by means of a mass balance using the reservoir data at the daily scale. The accuracy of this 

mass balance calculation was verified using monthly streamflow data from five available 

gauging stations spanning the study domain (Figure 3). Data were summarized for the wet 

(November-June) and dry (July-October) seasons, as well as annually (Figure 4). Herein, 

hydrological year spans the period between October and September. 

 

Figure 3: Top: evolution of the ratio of the sum of streamflow measured in the five available 

gauging stations together with the entire streamflow production obtained by the mass balance 

procedure with reservoir data. Bottom: evolution of the streamflow production generated by 

the mass balance procedure with reservoir data (blue) and the sum of streamflow measured at 

the five available gauging stations (red) (See locations in Fig 1). Dashed lines show linear 

regressions fitted using least-squares. The evolution of the ratio between the sum of 

streamflow data measured in the gauging stations and the total calculated streamflow does 

not show trends at the annual scale, and during both the wet (November-June) and dry (July-

October) season. The water level of the reservoir and the outflows (in m
3
/s) are monitored 

each minute by the Ebro Basin Management Agency. Given the sediment accumulation rates 

in the Yesa reservoir are very low and they have a clear decreasing trend (Navas et al., 2009) 

given small erosion processes as consequence of general agricultural abandonment and 

dominant natural revegetation processes in the basin ( García-Ruiz et al., 2015; García-Ruiz 

et al., 2008; Lasanta et al., 2010), the method to assess water generation in the basin is very 

robust. Given that the annual and seasonal series have similar evolutions and trend 

magnitudes that the average steamflow series by different available gauging stations, the total 

streamflow provided by the Ebro Basin Management Agency is fully representative of the 

evolution of total streamflow production in the basin.” 

http://www.chebro.es/


 

Figure 4: Average precipitation and streamflow over the basin. The low flow period is 

recorded between July and October (dry season) and marked with grey shading, while the 

high flow period occurs between November and June (wet season).   

Climate data were obtained from a high-resolution (1.1 km) weekly gridded dataset for the 

whole of Spain from 1962 to 2019. This dataset was developed using the most complete 

register of meteorological data provided by the Spanish National Meteorological Service 

(AEMET) (Agencia Estatal de Meteorología, http://www.aemet.es/es/portada; last accessed 1 

February 2021). The raw data were quality controlled, homogenized, and interpolated to a 

common grid resolution of 1.1 km. Further details about this dataset development are 

outlined in Vicente-Serrano et al. (2017). The gridded data of air temperature, relative 

humidity, sunshine duration (as a proxy for solar radiation), and wind speed were used to 

calculate atmospheric evaporative demand (AED) by means of the FAO-56 Penman-

Monteith equation (Pereira et al., 2015). The complete drainage area, which was obtained 

from a digital elevation model at a spatial resolution of 100 m using ArcHydrotools in 

ArcGIS 10.2, was used to aggregate monthly precipitation and AED series over the entire 

basin. To be comparable with streamflow data, climate data were transformed to Hm
3 

using 

the total basin area. 

Land cover maps for the decades of 1960 and 2010 were provided by the Spanish Ministry of 

Agriculture (https: www.mapa.gob.es/es/cartografia-y-

sig/publicaciones/agricultura/mac_2000_2009.aspx; last accessed 1 February 2021). Based 

on interpreting aerial photographs and conducting fieldwork, these maps were created at a 

spatial scale of 1:50000. To illustrate possible changes in greening conditions, the 

Normalized Difference Vegetation Index (NDVI) was calculated at a spatial resolution of 1.1 

km using the NOAA-AVHRR images covering the period from 1981 to 2015 (Vicente-

Serrano et al., 2020) combnined with MODIS NDVI 

(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php) for the period 2000-2019. Both 

datasets were standardized using the reference period 2000-2015.  

3.2. Methods  

http://www.aemet.es/es/portada
http://www.mapa.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_2000_2009.aspx
http://www.mapa.gob.es/es/cartografia-y-sig/publicaciones/agricultura/mac_2000_2009.aspx
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php


We have analyzed the magnitude of the trend in annual P, Q and AED to quantify the 

magnitude of the annual Q trend that may be associated to climate trends and vegetation 

changes. Significance of trends in hydrological and climatic variables was analysed by means 

of a modified Mann–Kendall trend test, which returns the corrected p values after accounting 

for temporal pseudoreplication (Hamed & Rao, 1998). To assess the magnitude of change in 

the different variables, we used a linear regression analysis between the series of time 

(independent variable) and the climatic and hydrological series (dependent variable). To 

quantify the magnitude of the annual Q trend that may be associated with climate trends and 

vegetation changes, we analyzed the annual trend magnitude of P, Q and AED. To figure out 

how climate and vegetation changes affect annual streamflow, we used multiple regression 

with streamflow as the dependent variable and precipitation, AED, and time as the 

independent variables (Beguería et al., 2003). Time was included in the models as a proxy for 

the progressive evolution of vegetation in the basin as a consequence of secondary 

succession. Due to the fact that the series only began in 1981, including NDVI was not 

possible; however, NDVI shows a clear linear increase (Figure 2), indicating that time can be 

used as a surrogate.  

 

 

Figure 5: Pearson’s r correlation coefficients between the streamflow series over the dry (red) 

and wet (blue) seasons and the monthly precipitation (top) and AED (bottom) accumulated 

for different periods. 

The forward stepwise selection of predictors was used in the construction of regression 

models using a threshold of 0.05 (Hair et al., 1995). For the annual streamflow analysis, 



annual precipitation totals and annual AED were considered as independent variables. 

Seasonally, there are large differences in the time windows in which climate variables are 

accumulated and affect streamflow, since they depend on physiographic and climatic 

variables (Barker et al., 2016; López-Moreno et al., 2013). For this reason, we first 

determined the precipitation and AED cumulative periods with the strongest correlations to 

streamflow (Figure 5). For the wet and dry seasons, higher correlations were obtained with 

precipitation accumulated for ten months before the end of the season. Therefore, the wet 

season precipitation totals from September to June were used as the independent variable in 

the regression model, while the dry season precipitation totals from January to October were 

used as the dependent variable. For the wet season, the maximum correlation between AED 

and streamflow was obtained for nine months, and for the dry season, the maximum 

correlation was obtained for ten months. 

The ordinary least square regression method was used to assess trends for wet and dry years 

and seasons. Herein, wet years (seasons) were defined as those exceeding the 70th percentile 

of precipitation over the period of record. On the other hand, dry years (seasons) were 

determined as those with rainfall falling below the 30th percentile. 

4. Results and discussion 

Annual precipitation in the basin shows high variability, with a non-significant decrease of 

8% in annual totals observed between 1962 and 2019 (Figure 6). Over the same time period, 

AED increased by 5.7%, which is statistically significant at the 95% level (p<0.05). From 

1962 to 2019, the annual streamflow in the catchment decreased by more than 40%, which is 

consistent with the pattern observed in other natural non-managed basins in Spain (Martínez-

Fernández et al., 2013). The decrease in annual streamflow is close to the increase (34.1%) in 

the estimated evaporation by means of the annual water balance. The decrease in streamflow 

cannot be attributed to changes in precipitation. Our findings indicate that annual 

precipitation decreased by 239.6 Hm
3
 over the 58-year study period, while annual streamflow 

declined by 692.5 Hm
3
. This difference (452.85 Hm

3
) can be attributed to the net increase in 

evaporation. An assumption can be made that the amount of increase in AED between 1962 

and 2019 corresponds to Evapotranspiration (E), as consequence of direct radiative forcing 

associated to warming. Nonetheless, this increase is only 130.9 Hm
3
 and there are still 321 

Hm
3
 of streamflow decline between 1962 and 2019 that would not be explained by the 

observed climate trend. Moreover, it is important to note that the increase in observed AED 

cannot be completely associated to the increase in E since during summer months soil 

moisture deficits are common and there is an evaporation deficit (E-AED), which is the main 

driver controlling forest growth in the region (Vicente-Serrano et al., 2015). Thus drought has 

significant consequences on vegetation activity and growth in the study area (Camarero et al., 

2011; Pasho et al., 2011; Peguero-Pina et al., 2007; Vicente‐Serrano, 2021). After removing 

the role of precipitation, the non-climate-related streamflow decline would range between 

321 Hm
3
 (if AED increase is fully representing an increase in E) and 452.8 Hm

3
 (assuming E 

changes are not driven by AED). These numbers represent between 46% and 65% of total 

streamflow decline, which would be explained primarily by the basin’s secondary succession 

process.  



 

Figure 6: Temporal evolution of annual precipitation (a), atmospheric evaporative demand 

(AED) (b) and streamflow (c) in the upper Aragón basin for 1962-2019. Dashed lines 

represent the linear trend obtained by means of least-squares. The percentage changes 

between 1961 and 2019 are obtained from the regression lines. P-values are obtained by 

means of the modified Mann-Kendall test (See section 2.2).  

The secondary role of the observed increase in AED in the streamflow reduction is confirmed 

by the regression analysis. Over the period 1962-2019, regression analysis using 

precipitation, AED, and time (in years, as a proxy for the effect of secondary succession and 

general greenness) as predictors of annual streamflow explains 82% of the variability in 

streamflow. However, AED was removed from our final model because it was not a 

significant predictor (Table 1). According to the partial correlation, precipitation has the 

largest (positive) influence on annual streamflow, while time exhibited a significant 

(negative) correlation. Annual precipitation showed a significant negative correlation with 

annual AED (Figure 7). The role of cloudiness in reducing solar radiation and air temperature 

can explain this negative relationship between precipitation and AED. Notably, the 

correlation between annual AED and streamflow was statistically non-significant after fixing 

(controlling) precipitation effect.  

Table 1: Correlation coefficients of the linear stepwise regression analysis in which annual 

and seasonal streamflow was the dependent variable and precipitation, AED and Time (in 

years) were the independent predictors. R2 represents the percentage of total variance of the 

independent variable explained by the predictors. Partial correlations represent the role of 

each independent variable, removing the influence of the covariates. Predictors showing a 

non-significant (0.05 level) role in explaining streamflow variability were not included in the 

final models. 



 R2 Partial correlations 
  Precipitation AED Time 

Annual 0.82 0.88 -0.09 (n.s.) -0.64 

Wet season 
(Nov.-Jun.) 

0.87 0.92 -0.06 (n.s.) -0.63 

Dry season 
(Jul.-Oct.) 

0.48 0.31 -0.21 -0.49 

 

 

 

Figure 7: Left: relationship between the detrended annual precipitation and AED in the upper 

Aragón basin between 1962 and 2019. Right: relationship between detrended annual 

streamflow and the independent role of AED once  the effect of precipitation is removed. 

Seasonally, there is also a large decrease in streamflow, being much stronger (-63.7%) during 

the dry season (Figure 8). Again, this decrease can not be driven by precipitation, which 

showed a statistically non-significant decrease on the seasonal scale. During the dry season, 

AED showed a significant negative partial correlation with streamflow, but its influence on 

streamflow is minor compared to precipitation and time. In the dry season, the inclusion of 

AED in the linear model accounted only for 2.3% of the total variance in streamflow.  

It can be concluded that while the interannual variability of streamflow is strongly correlated 

with annual precipitation totals, the decrease in streamflow cannot be explained by either 

precipitation decrease or enhanced AED. Rather, decreasing streamflow trends can be mostly 

associated with the progressive increase in vegetation cover and greenness over time. 

Previous studies suggested that the effect of increased greenness on precipitation partitioning 

between blue and green water is more pronounced in dry areas (Ukkola et al., 2016; Zeng et 

al., 2018). Based on empirical observations from the upper Aragón basin, where average 

precipitation is 1,300 mm year
-1

, our findings suggest that in a humid region affected by 

secondary succession and increased greenness, vegetation changes can also play a key role in 

reducing blue water.  

 



 

Figure 8: Temporal evolution of the dry (July-October) and wet (November-June) season 

streamflow. The values of precipitation and AED correspond to the periods having a stronger 

relationship with seasonal streamflow (see Figure S9)  precipitation and AED 

Furthermore, we found the effect of secondary succession on the partitioning of precipitation 

to be strongly differential between wet and dry years. Both precipitation and AED show 

similar non-significant trends during wet and dry years (Figure 9). However, a small (-15.4%) 

and non-significant decrease in annual streamflow was found in wet years, compared to a 

larger (-52.1%) and statistically significant decrease during dry years (Figure 10). The role of 

AED on streamflow evolution is non-statistically significant during either wet or dry years 

(Table 2). In wet years, green water increase is expected as a consequence of higher water 

consumption by more dense vegetation coverage but during these years, the abundance of 

precipitation makes that secondary succession and greenness have less impact on streamflow 

trend. In contrast, in dry years secondary succession tends to reduce blue water, in favor of 

increased green water use. Thus, blue water has been shown to decrease more during dry than 

wet years in Europe (Orth & Destouni, 2018), so it would be expected that the effect of 

secondary succession and increased greenness would be amplified during dry years. 

Vegetation tends to adapt maximum transpiration to available soil moisture (Grossiord et al., 

2020), consuming water necessary for physiological processes as the first “ecosystems 

priority” by increasing water use efficiency (Peters et al., 2018) and, consequently, reducing 



blue water generation. The differential effect of greenness on streamflow reduction between 

dry and humid regions (Ukkola et al., 2016; Zeng et al., 2018) identified by previous studies, 

is shown in the upper Aragón basin between wet and dry years; in wetter years the greater 

availability of water in the system, generates proportionally more blue water than during dry 

years.  

 

Figure 9: Evolution of precipitation and AED during wet (> 70% percentile) and dry (< 30% 

percentile) years. 

 

Figure 10: Evolution of annual streamflow during wet (a) and dry (b) precipitation years.  

 

 



The influence of secondary succession also differs between wet and dry seasons (Figure 11). 

Precipitation and AED reveal non-significant changes in the wet season (November-June) in 

both wet and dry seasons (Figure 12). Similarly, no significant decrease in streamflow is 

found since the decrease of blue water during dry seasons is not statistically significant. In the 

upper Aragón basin vegetation activity shows strong seasonality. As a consequence of cold 

air temperatures and dominant snow coverage in winter, vegetation activity is low during 

these months. Therefore, although secondary succession contributes to some decrease in blue 

water generation in the wet season, particularly during dry periods (Table 2), the main effect 

is recorded during the warmer dry season (July-October), which is characterized by high 

vegetation activity, and consequently water consumption over the different altitudinal belts 

that characterize vegetation in the basin (García-Ruiz et al., 2015). A significant decrease in 

streamflow during the dry season is evident in both dry and wet periods, with declines being 

more pronounced in rainy periods. Even in wet periods, the decrease in blue water during the 

dry season has been significant, probably as consequence of increased plant coverage and 

greenness. Consequently the decrease in dry season blue water generation has been dramatic 

during both dry and wet periods. Increased plant water needs as a consequence of enhanced 

AED and competition for available soil moisture not only cause strong decreases in blue 

water but also episodes of plant stress, low plant growth and forest dieback in response to 

drought (Vicente‐Serrano, 2021), which have become reinforced due to vegetation changes, 

climate variability and change in recent decades (Camarero et al., 2011; Macias et al., 2006). 

Table 2: Correlation coefficients of the different regression models for annual and seasonal 

periods considering a subset of dry and wet years. In all models streamflow was the 

dependent variable and precipitation, AED and time (in years) were the independent 

predictors. The R
2
 square coefficient represents the percentage of total variance of the 

independent variable explained by the predictors, while partial correlations represent the role 

of each independent variable after removing the influence of the covariates. non-significant 

(n.s.; 0.05 level) predictors were not included in the final models.   

   R2 Partial correlations 

   Precipitation AED Time 

Annual 
Dry years 0.76 0.80 -0.20 (n.s.) -0.73 

Wet years 0.52 0.69 -0.15 (n.s.) -0.49 

Wet season 
(Nov.-Jun.) 

Dry years 0.66 0.74 -0.00 (n.s.) -0.63 

Wet years 0.59 0.74 -0.17 (n.s.) -0.54 

Dry season 
(Jul.-Oct.) 

Dry years 0.42 0.55 -0.47 -0.49 

Wet years 0.70 0.18 (n.s.) -0.19 (n.s) -0.84 

 

 



 

Figure 11: Evolution of annual streamflow during the wet (a) and dry (b) seasons during high 

and low precipitation periods.  

Future climate change scenarios over the Mediterranean region show decreases in 

precipitation and more frequent droughts (Lionello & Scarascia, 2018). Large increases in 

AED are also projected (Vicente-Serrano et al., 2020). Under these scenarios, it is expected 

that blue water generation will decrease further in large areas of southern Europe affected by 

land abandonment (Lasanta et al., 2017), plant colonization and secondary succession 

(García-Ruiz et al., 2011). However, large uncertainties are associated with trends in future 

vegetation cover. While vegetation changes in the region have been considerable to date, 

potential remains for significant future changes, including the replacement of coniferous 

forests and shrublands by broadleaf forests below elevations of 1,600 m a.s.l., and the 

advance of shrublands and forests at elevations above 2,000 m a.s.l., as consequence of the 

pasture abandonment and increases in air temperature (Sanjuán et al., 2018). This evolution 

could affect future availability of water resources since once the current dominant young 

forests reach more mature levels they may demand more water, as old forests have a lower 

water yield response (Teuling & van Dijke, 2020). Although increased atmospheric CO2 

concentrations could have limited plant water needs (Swann, 2018), our results suggest that 

water availability for socio-economic activities have been highly affected by water demands 

from vegetation changes. This finding concur with modeling studies at larger scales (Mankin 

et al., 2019).  



 

Figure 12: Evolution of precipitation and AED for wet (> 70% percentile) and dry (< 30% 

percentile) seasons and years. 

 

Mountainous areas in southern Europe are the water towers (Viviroli & Weingartner, 2004) 

in which the usable water resources of the region are generated. Water supply to irrigated 

areas is already restricted during dry years in the study domain (Vicente-Serrano et al., 2017; 



Vicente‐Serrano, 2021). These findings, coupled with projected land use and climate change 

in southern Europe suggest that sustainable land management practices must be focused on 

limiting green water losses to enhance availability of blue water into the future. In this light, 

practices such as thinning (Manrique-Alba et al., 2020) and clearing shrublands for livestock 

(Lasanta et al., 2019) could be considered sustainable water management practices in 

southern Europe (García-Ruiz et al., 2020).     

 

5. Conclusions 

This study analysed the partition of the available water resources between blue and green 

water in a Spanish mountainous Mediterranean basin from 1960 to 2019. The study basisn is 

characterized by substantial plant secondary succession processes. Overall, the main 

conclusions of this study can be summarized: i)blue water has declined by 40% in the study 

domain over the last six decades, ii) climate trends accounted for a small portion of blue 

water reduction, iii) the strong decrease in streamflow can be explained largely by the process 

of plant secondary succession and increased vegetation, iv) the partition of precipitation 

trends between blue and green water trends differs between dry and wet years, v) there is 

stronger increase in the total basin evaporation during dry years, which drastically limits the 

production of blue water, posing major challenges to water availability during droughts 

episodes and vi) there are significant seasonal differences in the role of dry and humid years 

in precipitation partitioning between blue and green water. The most pronounced impacts can 

be noted during dry season, when vegetation is more active and consume more water, 

reducing dramatically water resources, even in wet summers.   
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Section iii)    
 

The impact of arterial and land drainage on low flows and drought in the Boyne 

Catchment, Ireland 

1. Introduction 

Arterial drainage comprises the artificial widening and deepening of main river channels and 

important tributaries to improve discharge conveyance (O’Kelly, 1955). Following arterial 

works peak flows have been noted to increase and the time to peak and duration of flood 

hydrographs to shorten (O’ Kelly, 1955; Bree and Cunnane, 1979; Bailey and Bree, 1981). 

The Boyne catchment experienced widespread arterial drainage over the period 1969-1986 

(OPW, 2014) with more than 60 % of the river network affected. According to Harrigan et al. 

(2014) most works were competed between 1977 and 1979 with works on the main channel 

of the Boyne completed in 1984 (Figure 2).  Coincident with arterial drainage, the catchment 

was also subject to extensive field drainage works. This involves the installation of pipes and 

ditches to remove surplus water from waterlogged agricultural lands, resulting in shorter 

transmission times of water to river channels (Harrigan et al., 2014). Previous studies have 

indicated that field drainage likely increases runoff in winter and spring (Burdon, 1986). 

Little is known about the impact of arterial and land drainage on drought and low flows. Even 

international reviews have tended to concentrate on impacts on high flows and highlight the 

lack of catchment based studies investigating low flow and drought response (Blann et al, 

2009; Gramlich et al., 2018). In Ireland Essery and Wilcock (1991) found that low flows 

were increased following drainage of the upper River Maine in Northern Ireland, though the 

highlight uncertainty as to whether this change was due to climate variability or drainage 

impacts. Other than this single study we know of no other previous research investigating low 

flow response to drainage, despite the fact that such schemes have been widely implemented 

not just in Ireland, but across Europe.  

Therefore, in this study we attempt to use simulation-based methods to reconstruct river 

flows in the Boyne catchment to create a ‘virtual’ world in which drainage did not take place. 

Our reconstructions include climate variability, with only internal catchment change not 

included in the model. We calibrate our model on the pre drainage period and use it to 

simulate the post drainage record. We then evaluate evidence of change in key low flow 

metrics and drought events to examine any impact of drainage on flows in the Boyne.  

 

2. Description of the study area 

The Boyne catchment located in east Ireland has an annual average total precipitation of 897 

mm (1952-2009). The catchment drains a total land area of 2,694 km
2 

(Figure 1). A long-term 

river flow gauging site (1941-present) of good quality is located at Slane Castle in Co. Meath 

(lat 53.706870
o
N, long 6.562389

o
W) and used in this study to represent flows in the 

catchment. The catchment area to Slane Castle is 2,460 km
2
 and the main channel length is 

94 km. There are several lakes in the catchment, to the north, the most significant being 

Lough Ramor and Mullagh lake in Co. Cavan. The catchment can be characterised as being 

predominantly flat to undulating lowland with elevation ranging between 16 and 338 m. 

Land-use is dominated by agricultural pastures (87 %) with dairy farming being the 

predominant agricultural enterprise. Other significant land use types comprise arable 

agriculture (~10 %), forestry (~5 %) and bogs (~5 %). The catchment is classified as 



essentially rural with approximately 1.5 % of the catchment containing urbanised areas. The 

main towns in the catchment include Drogheda, Navan, Trim, Kells, Virginia, Bailieborough, 

Athboy, Kinnegad, Edenderry and Enfield. The total population of the catchment is 

approximately 196,400, with a population density of circa 73 people per km
2
. Water supplies 

in the catchment for human consumption comprise 89 abstractions, including six group water 

schemes, eight public supplies serving major urban centres and five private supplies.  
 

 
Figure 1 The Boyne catchment in eastern Ireland. The red dot marks the location of the river flow gauge 

at Slane Castle. 

 

The catchment is underlain by metamorphic rocks in the north and limestone bedrock in the 

centre and south of the catchment. Extensive sand and gravel areas are found in the upper 

reaches of the catchment. Geology and soil types show a similar pattern with the southern and 

central parts of the catchment dominated by grey brown podzolics and gleys with significant 

peat deposits. In the north of the catchment soils are typically acid brown earths and gleys. 

More than 35 percent of the catchment is comprised of poorly drained soils, including basin 

peat and gleys. Given the importance of agriculture in the catchment and the presence of 

poorly drained soils, the catchment has been subject to extensive arterial and field drainage 

works. Harrigan et al. (2014) estimate that more than 30 percent of the catchment has been 

subjected to field drainage, however neither exact figures, nor the location of field drainage 

works are available due to a lack of records on implementation.  

 

Figure 2 Number of major watercourses per year in which arterial drainage was completed in the Boyne. 

The cumulative length (km) completed is shown by the red line (Source: Harrigan et al., 2014). 

 



3. Data and methods 

3.1 Data 

Daily streamflow data for the Boyne at Slane Castle for the period 1942-2019 were obtained 

from the OPW hydrometric website (https://waterlevel.ie/hydro-data/). Before use metadata 

codes were evaluated to ascertain the quality of flow measurements during critical low flow 

periods. For the earliest record a high proportion of data for summer and autumn were 

flagged as poor data as so daily streamflow data from 1960 on onwards were employed. 

Catchment average precipitation was estimated from five rainfall gauges maintained by Met 

Éireann and distributed throughout the catchment, namely Kells, Warrentown, Navan, 

Mulligar and Ballivor. Catchment average rainfall was derived as a simple average across 

stations for each day. As the number of gauges contributing to the catchment average varies 

through time, checks were made to ensure that no breaks in the series were associated with 

the changing number of contributing gauges. Finally, potential evapotranspiration (PET) 

losses for the catchment were obtained from Dublin Airport using the Penman Monteith 

method. While located outside the catchment this series is assumed to be representative and 

no direct measurements of PET are available within the catchment concurrent with time 

period of observed rainfall.  

3.2 Methods 

3.2.1 Hydrological Model 

We employ the GR4J (Perrin et al., 2003) daily lumped conceptual rainfall-runoff model to 

model daily streamflow. GR4J has a parsimonious structure consisting of four parameters 

(𝑥1–𝑥4) that require calibration. The model takes input of observed daily runoff, precipitation 

and potential evaporation. Observed daily discharge (m
3
/s) was converted to runoff in 

mm/day. We chose GR4J as it has undergone extensive testing in several countries and has 

been shown to accurately simulate the hydrology of diverse catchment types, with 

comparatively good results versus other models (e.g. Coron et al., 2012; Perrin et al., 2003; 

Vaze et al., 2011). It has also been successfully applied to Irish conditions (Broderick et al., 

2016; 2019, Donegan et al., 2021) where it was found to perform well across a wide range of 

catchments, with respect to both temporal transitioning between wet and dry periods and the 

reproduction of various hydrological signatures. GR4J was implemented  using the AirGR R 

package (Coron et al., 2017).  

 

Figure 3 Structure of the GR4J model and four parameters (x1-x4) (Source: Drogue and Khediri, 2016).  



The GR4J model structure is shown in Figure 3. Water is partitioned between the production 

(soil moisture accounting) store and the routing store. The production store (capacity 𝑥1 mm) 

gains water from effective rainfall and loses water from evaporation and percolation. Ninety 

percent of the total quantity of water reaching the routing component is routed by a unit 

hydrograph (time base 𝑥4 d) and a non-linear routing store (capacity 𝑥3 mm). The remaining 

10% is routed by a single unit hydrograph (time base 2(𝑥4) d). A groundwater exchange 

function (rate 𝑥2 mm d
–1

) operates on both routing channels and can be positive, negative, or 

zero. 

We calibrate the model in the pre-drainage period before simulating runoff for the period 

1960-2019. We assume that the calibrated model, which implicitly contains information of 

climate variability and change can be used as an estimate of flows in the absence of arterial 

drainage. For a range of low flow indices, comparing observed (including drainage) with 

simulations (absence of drainage) allows us to isolate the impact of drainage interventions in 

the catchment. Calibration was undertaken for the period 1/1/1960 to 31/12/1969 before 

being used to simulate runoff for the entire period 1/1/1960 to 31/12/2019. Two years of data 

(1958-1959) were used for model warmup.  

Uncertainty in simulations due to model parameters was evaluated by sampling 10,000 

parameter sets using a uniform distribution representing plausible ranges for each parameter 

(X1: 100-300; X2: -1.5-0.5; X3: 50-150; X4: 1.5-2.9). Simulations for each parameter set 

were assessed using two criteria during the calibration period. First, given our focus on low 

flows we used the Nash Sutcliffe Efficiency criteria derived on the log of runoff. Second, the 

ability each parameter set to capture observed baseflow was assessed. To this end we 

employed the baseflow separation technique from the ‘lfstat’ R package ( Koffler and Laaha, 

2012), which implements the techniques for low flow analysis recommended by the World 

Meteorological Organisation (Gustard and Demuth, 2009). Parameter sets were deemed 

behavioural and retained if they achieved a LogNS ≥ 0.80 and a percent bias ≥ ± 2.5 percent 

during the calibration period. Behavioural parameter sets were further evaluated for the 

evaluation and full simulation periods to examine loss in performance. In addition to 

evaluating individual model runs we also derived a median simulation across all retained 

parameter sets, and upper (0.975) and lower (0.025) quantile-based confidence intervals. 

 3.2.2 Low flow indices examined 

Indices representing low flow conditions were extracted for observed and simulated runoff 

for the period 1952-2019. These include Q95, Q90, and Q70, annual minimum 1-, 7- and 15-

day runoff. In addition, we examine annual mean flow together with annual mean baseflow 

and runoff derived using the baseflow separation technique described above. Finally runs  

analysis was undertaken to identify individual drought events defined as those in which 

runoff falls below Q70. Statistics on the number of events, their duration and accumulated 

deficits were extracted from observed and median simulated runoff.  

3.2.3 Statistical tests 

Different tests for change (break) points in observed and simulated flows were deployed. We 

are particularly interested in whether change points were detected in observed flows around 

the period of drainage implementation in 1970s and whether any changes detected were 

evident in both the observed and simulated flows. The null hypothesis of no evidence of a 

change point was evaluated at the 0.05 level. Four tests for change points were implemented, 

namely; the non-parametric Pettitt test (Pettitt, 1979), and the parametric Buishand Range test 

(Buishand, 1982), Buishand U test (Buishand, 1982) and Standard Normal Homogeneity Test 



(SNHT) (Alexandersson, 1986). For parametric tests significance was evaluated using 20,000 

Monte-Carlo replicates. All indices were checked for evidence of autocorrelation before 

application of statistical tests, with no significant autocorrelation detected at the 0.05 level 

using the Durbin Watson test. We also tested for monotonic trend using the Sen’s Slope (Sen, 

1968) and Mann Kendall test (Mann, 1945; Kendall, 1975). All statistical testing was 

implemented using the ‘trend’ R package (Pohlert et al, 2016).  

4. Results and discussion 

4.1 Model performance 

GR4J performed well during calibration with medial logNS score of 0.935 with 835 

behavioural parameter sets identified and retained. Figure 4 shows boxplots for calibration 

and associated performance for the simulation period 1970-2019. In the post drainage 

simulation period, there is a decrease in the performance of behavioural parameters sets, with 

the median score falling to 0.91. Figure 4 b and c also shows scatter plots of the median 

simulation for both the calibration and simulation period. For calibration the scatter plot is 

tightly clustered across the range of flows, indicating the ability of the model to capture high 

and low flows. For the post drainage simulation period there is increased scatter, particularly 

at high flow, where the model tends to under estimate the high flows.  

This consistent with the findings of Harrigan et al. (2014) who show an increase in high 

flows following drainage and an inability of their three models, calibrated for a similar pre-

drainage period, to capture high flows following drainage. They hypothesised that drainage 

increases the rainfall runoff response, decreasing storage and producing a quicker response to 

rainfall (Harrigan et al., 2014). Other empirical work also indicates the impact of drainage on 

enhanced high flows (REFS). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Calibration and simulation results for the Boyne at Slane castle a) shows boxplots of LogNSE 

results for behavioural simulations for the calibration and simulation periods. b) scatter plot of observed 

and median simulated runoff for the calibration period and c) for the simulation period. 

b c 
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Figure 5 Comparison of observed (grey dots), median simulated (red line) runoff and 95 percent 

confidence intervals (black dashed line) for the full simulation period 1960-2019. 

Figure 5 shows the observed, median simulation and uncertainty bounds of daily flows 

produced using behavioural parameter sets for the entire period. Again, the good fit of 

simulated and observed flows is evident for the pre-drainage period, with observations in 

high agreement with the median and well contained within the 95 percent confidence 

intervals of simulations. In the post drainage period, high flows in particular frequently fall 

outside the model confidence intervals. However, it is noted that performance for low flows 

is hard to discern from this plot, we return to results for low flows in more detail below.  

 

4.2 Drainage impact on baseflow, runoff and total flow 

To further investigate the possible impact of drainage on the hydrological regime of the 

Boyne catchment we apply a baseflow separation routine to daily flows to investigate if any 

impacts on baseflow, runoff and total flows are evident across the simulation period. Figure 6 

shows the results for the median and behavioural parameter sets relative to the observed 

annual mean flows for the full simulation period. For baseflow, the model performs well in 

the pre-drainage period with close coherence between observed and simulated baseflow up to 

the mid-1970s, when drainage works were being implemented. In addition, observations fall 

well withing the confidence intervals estimated across all 835 behavioural parameter sets. 

From the mid-1970s, a particularly from the 1980s onwards, there is a a large increase in 

baseflow contributions to total flows, that is not captured by the model simulations. For the 

post drainage period baseflow falls well outside even the upper confidence interval of 

simulations. Therefore, an increase in baseflow is apparent as drainage works were 

proceedings, likely as the proportion of the catchment impacted increased beyond a certain 

threshold. It is evident that the installation of field drains and the deepening and widening of 

river channels may have cut through aquifers in the catchment, increasing baseflow 

contributions to the overall flow. Notably, the increase the enhanced baseflow in the post 

drainage period persists through the entire record, with little evidence of return to pre-

drainage conditions. This finding contrasts with the work of Bhattari and O’Connor (2004) 

who investigated rainfall runoff response to drainage in the Brosna catchment finding an 

initial response to drainage, but a return to pre-drainage rainfall-runoff conditions after a 

decade and a half.  

Figure 6 also shows the simulations for annual mean runoff (again identified using a baseflow 

separation routine). Notably, uncertainty in runoff derived from model parameters is larger 



for runoff that for baseflow. Nonetheless, the model performs well for the pre-drainage 

calibration period. There is a slight tendency for the median simulation to underestimate 

runoff. Following drainage, the discrepancy between observed and simulated runoff is 

enhanced, particularly for the period after 1980, after which there is a persistent and large 

under estimation of runoff by the model. The timing of this deviation in performance is a 

little later that identified for baseflow and is likely due to the fact that the late 1970s were a 

particularly drought rich period. Once wetter conditions were experienced in the early 1980s, 

the impact of drainage on runoff becomes more obvious.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Observed (black line) and simulated baseflow, runoff and total flow for the full simulation 

period 1960-2019. Red dashed line is the median simulation across behavioural simulations (grey). 

 

Finally, Figure 6 shows the overall impact of drainage (combined changes in baseflow and 

runoff) for annual mean flows in the catchment. As expected, there is good agreement 

between model simulations and observations in the pre-drainage period, with the model 

substantially underestimating flows in the post drainage period, with this persisting through 

the entirety of the remaining dataset. Our analysis indicates that the largest contribution to 



increased flows post drainage is through enhanced baseflow contributions which adds a 

different perspective to previous research which has tended to focus on floods and high 

flows. This research had tended to conclude that arterial drainage works in Ireland has 

increased flows through enhanced runoff efficiency and resulted in higher peaks. Higher 

peaks in the post drainage period, together with elevated annual mean flows are evident in 

our results for the Boyne. However, in contrast to previous work, this analysis indicates that 

the largest contribution to enhanced flows post drainage in the Boyne catchment comes not 

from runoff but from elevated baseflow. Next, we evaluate changes pre and post drainage for 

low flow indices and drought events.  

4.3 Drainage impact on low flow percentiles 

To evaluate the impact of drainage on low flows we extract the annual Q95 (flow exceeded 

95 percent of the time), Q90 and Q70 from observed and simulated runoff. The results are 

shown in Figure 7. For both Q95 and Q90 only modest differences between observed and 

simulated flows are evident throughout the series. Greatest differences are apparent for the 

wetter years, with little difference discerned for drier or average years, where for the most 

part, model simulations and observations are in close agreement for the pre and post drainage 

record. Previous work for the river Maine in Northern Ireland highlighted that drainage in 

that catchment increased low flows (Essery and Wilcock, 1990). In addition, this result is 

somewhat surprising given the increase in baseflow identified above. However, we find no 

such evidence for Q95 and Q90. That said, while volumetric flows may not be increased, 

widening of channels after drainage works would mean shallower water levels for the same 

flows, pre and post drainage, with knock on effects for sensitive ecosystems and fisheries.  

Notably, differences in Q70 are apparent between the pre and post drainage periods, with the 

latter showing an increase in this flow percentile, consistent with the timing of increases in 

baseflow. Despite close agreement between median simulated and observed annual Q70 in 

the pre drainage period, model simulations consistently, with the exception of the wettest 

years, underestimate observed Q70 with the observed series falling well above the upper 

bound of the confidence intervals from the late 1970s onwards. These results suggest that 

while increases in baseflow do not seem to impact on the lowest flow percentiles, it does 

impact on less extreme low flows. This is also seen when the flow duration curve is examined 

for the median simulated and observed flow quantiles across the post drainage record, with 

notable divergence commencing at Q70 and extending to the highest flows (not shown). That 

little evidence for drainage impact is evident below Q70 suggests that increases in baseflow 

contribution are more limited at lower flows and that the impact of drainage may be limited 

for drought events (see section 4.5).  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Annual observed (black line) and simulated Q95, Q90 and Q70 runoff. Red dashed line is 

median simulation across behavioural parameter sets (grey). 

 

4.4 Statistical significance of observed and simulated changes 

Statistical tests for change points and monotonic trends were evaluated for catchment 

precipitation, PET together with different observed and simulated flow metrics to examine if 

the changes identified above are significant at the 0.05 level. No significant changes were 

identified for catchment precipitation, while results for each flow metric are provided in 

Figure 8, where box plots show the range of p-values for each statistical test from behavioural 

simulation and the red dots show the resultant p-values for observations. In agreement with 

earlier analyses no significant changes are evident for the lowest flows (annual Q95, Q90, 

min-7 and min-15 day flows). For Q70 a possible change point in observations is identified 

for 1978 (consistent in timing across all tests). While not significant at the 0.05 level, this 

change point is significant at the 0.10 level. None of the behavioural simulations return p-

values even close to the critical threshold. Observed annual baseflow, runoff and flows show 

a significant breakpoint (0.05 level) in late 1970s, coincident with implementation of 

drainage. Simulations do not show evidence of significant breakpoint, consistent with 

findings for observed precipitation. These results quantify findings presented in previous 

sections, while the timing of observed breaks, together with the nature of changes in rainfall 

runoff processes add confidence that the observed changes are due to arterial drainage and 



not other potential drivers of change not considered. It is worth noting however, that the 

purpose of drainage works was to improve agricultural land and therefore drainage is likely to 

have been accompanied by changes in land use. However, we do not consider those changes 

here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 P-values of tests for step and monotonic change in observed (red dot) and simulated (boxplots) 

indices. The red dashed line marks the 0.05 threshold for rejecting the null hypothesis of no step 

change/trend. 

 

4.5 Drainage impact on hydrological drought events 

Lastly, we deploy runs analysis to identify individual drought events in the post drainage 

record to examine for any changes in drought frequency and their characteristics. We use 

Q70 as the threshold for identifying droughts, whereby drought commences once flows fall 

below Q70 identified over the entire period of record, and end once flows recover/exceed 

Q70. Figure 9 shows density plots constructed for minimum flows, duration (days) and 

accumulated deficits of all droughts identified using the observed and median simulated 

series. No significant difference in the frequency of drought events is found. Similarly, no 

significant differences in drought duration or accumulated deficits are evident between 

observed and simulated flows in the post drainage record.  

However, differences in the minimum flows reached during drought events are apparent with 

minimum flows in the observed series tending to be more extreme than those returned for the 

median simulated series. This suggests that drainage may be increasing drought severity. 

Given the increases in baseflow following drainage highlighted above, it is not clear why this 

may be so. Perhaps it is the case that while drainage increases the connectivity of local 

aquifers with the river, this becomes impeded at the lower flow range as the water table falls, 

resulting in more severe droughts through more severe minimum flows. However, we note 

that no significance changes are found for our assessment of observed changes in the 



minimum annual flow, nor for extended low flow metrics (min-7 and min-15 day events). It 

may be, therefore that the differences found for minimum flows during drought events are an 

artefact of the hydrological model used. Future research should prioritise investigation of 

these contradictory findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Density plots of observed (black) and median simulated (red) drought characteristics for the 

post drainage period (1970-2019) for minimum flow, duration and accumulated deficits of each drought 

event identified. 

5. Conclusions 

This research investigated the impact of arterial and land drainage on low flows and droughts 

in the Boyne catchment, Ireland. Little previous research has investigated the impact of 

drainage on low flows and drought, with most focusing on high flows and floods. We find 

evidence of changes in flows consistent with the timing of arterial drainage works. In line 

with previous research high flows are greater in magnitude following drainage, while we find 

that drainage results in an increase in baseflow and to a lesser extent an increase in runoff, 

resulting in enhanced annual mean flows relative to the pre drainage record. Despite the 

increase in baseflow we find limited evidence for change in low flow metrics below Q70 (the 

flow exceeded 70 percent of the time) in the post drainage period. Moreover, for individual 

drought events, we find little difference between model simulated drought duration and 

accumulated deficits in the post drainage period. However, we do find some evidence that 

arterial drainage may increase the severity of minimum flows during drought events, 

although we highlight this result as tentative and suggest that future research should examine 

the robustness of our result.  

Overall, our findings contrast with one of the few studies to examine drainage impacts on low 

flows, whereby increases in low flows were found for the river Maine in Northern Ireland 

following implementation of drainage works. This highlights the importance of local scale 

hydrology, catchment characteristics and the specifics of the drainage installation works 



themselves in determining overall rainfall runoff responses. It is therefore difficult to 

extrapolate the above findings beyond the Boyne catchment. Valuable ongoing research is 

attempting to rescue hydrometric data for arterially drained catchments in Ireland (de Smeth 

et al., 2023) to extend available observations for implementation of simulation-based 

approaches to attribution, as implemented here. These data will facilitate a greater sample of 

drained catchments with pre and post drainage records to further investigate impacts across 

the flow regime.  
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Section iv) 
 

 

 

Relating drought indices to impacts reported in newspaper articles 

 

Previous deliverables highlighted the utility of newspaper records for examining drought 

impacts in the Boyne catchment. In this work we expand the analysis of newspaper impact 

reports to a larger number of catchments in Ireland. In doing so we explored the link between 

standardised drought metrics representing meteorological and hydrological droughts and 

associated thresholds typically associated with reporting of drought impacts in newspapers. 

These findings show the value of newspaper archives for understanding regional sensitivities 

to drought and have potential to inform the development of a drought monitoring and 

warning system in Ireland. 

   

1. Introduction 

Drought is one of the most damaging natural hazards, arising from extended periods of 

reduced precipitation, often covering large areas for periods of months to years, or even 

decades (Mishra and Singh, 2010; Van Loon and Laaha, 2015). Impacts may be experienced 

at local, regional and national scales (Wilhite et al., 2007), including reduced agricultural 

output, freshwater shortages, ecosystem degradation, reduced energy and industrial 

productivity (Gil et al., 2013; Mosely, 2015; Van Vliet et al., 2016; García-León et al., 

2021). Given their effects, understanding drought events and their links to impacts is crucial 

to successful management (Wilhite et al., 2007). Typically, drought assessments involve 

analysing the features of historic drought – in terms of their occurrence, duration, intensity 

and accumulated moisture deficits, expressed through drought indicators. Studies linking 

indicators to impacts, however, have been relatively rare, primarily due to the limited 

availability and spatial coverage of historical impact data (Bachmair et al., 2015). Studies 

undertaken typically relate to agricultural drought and linking indices to crop yields, with 

multi-sectoral impact assessments much sparser (Wang et al., 2020b). As such studies are of 

fundamental importance in gaining a better understanding of drought impacts, further 

research is warranted in this area (Bachmair et al., 2016).  

Indices are widely employed to quantify historic and future drought (Steinemann et al., 2015; 

Ekström et al., 2018). For meteorological drought, indices such as the Standardised 

Precipitation Index (SPI), Standardised Precipitation Evapotranspiration Index (SPEI), 

Effective Drought Index (EDI), Reconnaissance Drought Index (RDI) and Palmer Drought 

Severity Index (PDSI) are often used (e.g., Erfurt et al., 2019; Erfurt et al., 2020; Deo et al., 

2017; Tsakiris et al., 2007; Lloyd-Hughes and Saunders 2002). For hydrological drought, 

indices such as the Standardised Streamflow Index (SSI), Total Storage Deficit Index (TSDI) 

and Palmer Hydrological Drought Index (PHDI) can be applied (e.g. Vicente-Serrano et al., 



2012b; Nie et al., 2018; Karl, 1986). Although indicators provide a means of quantifying and 

comparing droughts (Vicente‐Serrano et al., 2011) their usefulness and representativeness of 

extreme events can be limited when derived from short series (Wu et al., 2005). Furthermore, 

drought indices may not always reflect actual impacts on society and/or the environment 

(Bachmair et al., 2016), particularly in cases of modulation and propagation of hydrological 

droughts by catchment properties (Barker et al., 2016; Rust et al., 2021). 

Good quality, long-term precipitation and flow records are essential for drought analysis 

(Brigode et al., 2016). However, most precipitation datasets are short, with observations 

typically commencing in the second half of the 20th century in many regions (Brunet and 

Jones, 2011). For river flows, available records are often even shorter (Mediero et al., 2015). 

Data rescue efforts are continually extending the availability of observed meteorological 

variables including precipitation (e.g. Ashcroft et al., 2018; Hawkins et al., 2019; Ryan et al., 

2021a), however historical records for river flow are not as readily available. One means of 

addressing this is by reconstructing historic river flows using rainfall-runoff models forced 

with long-term temperature and precipitation series (e.g. Jones, 1984; Spraggs et al., 2015; 

Crooks and Kay, 2015; Rudd et al., 2017; Hanel et al., 2018; Smith et al., 2019; Noone and 

Murphy, 2020; O’Connor et al., 2021b).  

Drought indicators have been extracted from reconstructed flows to assess historical droughts 

in a number of studies (e.g. Caillouet et al., 2017; Hanel et al., 2018; Erfurt et al., 2020; Rudd 

et al., 2017; Moravec et al., 2019; O’Connor et al., 2022a). However, knowledge of drought 

characteristics alone does not necessarily translate into socio-economic impacts. Establishing 

robust links between indicators and impacts is important for evaluating and communicating 

drought risks. Methods have been developed to do this by associating meteorological drought 

indices with historic records (e.g. Vicente-Serrano et al., 2012a; Gudmundsson et al., 2014; 

Bachmair et al., 2015; Blauhut et al., 2015; Stagge et al., 2015a; Bachmair et al., 2018; 

Parsons et al., 2019; Salmoral et al., 2020). Others have related hydrological drought to 

impact metrics (e.g. Bachmair et al., 2016; Sutanto and Van Lanen, 2020) by drawing on 

centralised databases (e.g., the European Drought Impact Report Inventory: Stahl et al., 

2012). National-level databases also exist, such as the UK Drought Inventory (UKCEH, 

2021) and US Drought Impact Reporter (Wilhite et al., 2007). In Ireland, historic monastic 

writings, including the Irish annals, have been used to evaluate extreme weather events and 

their impacts over the last two millennia (e.g. Hickey, 2011; Ludlow 2006). More recently, 

Murphy et al. (2017) demonstrated the value of historical newspaper archives in an analysis 

of drought impacts over the past 250 years. Noone et al. (2017) also used newspaper archives 

to verify the occurrence and duration of historical droughts. The utility of newspaper articles 

as a source of information on drought impacts has also been demonstrated in the UK (e.g. 

Dayrell et al., 2022) and elsewhere (e.g. Llasat et al., 2009; Linés et al., 2017; Brázdil et al., 

2019).  

The SPI has been shown to be effective in generating strong links between drought 

occurrence and agricultural impacts (Vincente-Serrano et al., 2012a). Similarly, the SSI has 

demonstrable utility for linking hydrological drought with groundwater levels, vegetative 

growth, and agricultural yields (Vicente-Serrano et al., 2021). Most studies explore such 



associations using correlation analysis, but other methods have been trialled. For example, 

Bachmair et al. (2017) found that random forest and logistic regression models predicted 

text-based reports of a range of drought impacts well. Similarly, Blauhut et al. (2015), 

Parsons et al. (2019), Stagge et al. (2015a) and Sutanto et al. (2019) concluded that logistic 

regression could generate valuable information on localised impacts. 

Although many studies have demonstrated the utility of indices in drought assessments 

(Kchouk et al., 2021), impacts are often evaluated within a static framework under assumed 

stationarity. However, population change, demographic profiles, technological developments, 

water and land management policies, environmental conditions, water demand and social 

behaviour are all dynamic factors affecting drought vulnerability (Wilhite et al., 2014). 

Recent studies have begun to address this knowledge gap. For example, Parsons et al. (2019) 

found an increasing likelihood of agricultural related drought impact reports in the UK, which 

they equate to increases in actual or perceived vulnerability as a result of changing farming 

and reporting practices. Stagge et al. (2015a) attributed inter-annual variations in agricultural 

drought impacts across Europe to sampling and reporting bias, impact awareness, changes in 

coping capacity, economic stressors and political effects. Erfurt et al. (2019) found that, 

despite meteorological drought propagation and types of impacts remaining consistent over 

time in southwest Germany, impacts and vulnerability have fallen. 

In this paper, we related monthly drought indicators and reported impacts for 51 catchments 

in Ireland. We use reconstructed catchment precipitation and river flows, alongside drought 

impacts derived from newspaper archives covering the period 1900-2016. Section 2 provides 

an overview of the datasets and methods employed, Section 3 presents the results of our 

analysis, then Section 4 provides a discussion of key results and insights. Finally, conclusions 

are drawn and suggestions for further research are offered in Section 5.  

 

2. Data and Methods 

2.1 Meteorological and hydrological data   

Meteorological and hydrological data consist of monthly precipitation and river flow 

reconstructions (1767-2016), produced by O’Connor et al. (2021a) for 51 catchments across 

Ireland
1
. Catchment specific monthly precipitation reconstructions were extracted from the 

gridded (0.5° x 0.5°) precipitation dataset developed by Casty et al. (2007) and bias-corrected 

to observed catchment data. O’Connor et al. (2021a) also produced uncertainty estimates for 

flow reconstructions by applying different model structures and parameter sets; here we use 

the available ensemble median flow reconstruction for each catchment. Previous hierarchical 

cluster analysis of the SSI-1, 3, 6 and 12 during 1767-2016 identified three dominant 

catchment clusters for Ireland from the same 51 test catchments (O’Connor et al., 2022a). To 

allow for a comparison of results between both studies, we conduct our analysis using the 

same cluster groupings (see Figure 1a). Cluster 1 catchments, located in the wetter northwest 

of the island, have relatively small areas, low groundwater content, and most frequent 

hydrological droughts. Cluster 3 catchments, located in the drier east/southeast, have 

                                                           
1
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relatively large groundwater contributions, large areas and the lowest frequency of 

hydrological droughts that, once established, result in the longest durations and greatest 

accumulated deficits. Cluster 2 catchments, located in the southwest, have a drought 

frequency intermediate between Cluster 1 and 3, with short durations and relatively low 

accumulated deficits. Median monthly flow and precipitation were extracted for catchments 

comprising each identified cluster. As per O’Connor et al. (2022a), standardised drought 

indices for 1767-2016 were applied to median monthly precipitation and flow data in each 

cluster. These were the Standardised Precipitation Index (SPI; McKee et al., 1993) and 

Standardised Streamflow Index (SSI; Vicente-Serrano et al., 2012b) over accumulations of 1, 

2, 3, 4, 5, 6, 9, 12 and 18 months. These were generated using the “SCI” package in R 

(Gudmundsson and Stagge, 2016). The 70-year reference period (1930-2000) and the 

Tweedie distribution, both found by O’Connor et al. (2022a) to perform best at fitting SPI 

and SSI in Irish catchments, were employed to generate indices. Extracted monthly SPI and 

SSI series for 1767-2016 were subsequently truncated to 1900-2016, concurrent with the 

derived drought impact data discussed next.  

 

 

 

Figure 1. Spatial distribution of (a) clusters of catchments used in the analysis and (b) counties 

and corresponding drought impact article numbers (combined land-based and hydrological-

based) over the period 1900-2016. 

2.2 Drought Impact Data 

Jobbová et al. (2022b) developed an Irish Drought Impacts Database (IDID; Jobbová et al., 

2022a) from the Irish Newspaper Archive (INA) spanning the period 1738-2019. The INA is 



an online newspaper database consisting of over six million pages of searchable content from 

100 titles for the Island of Ireland. A number of search terms were trialled (e.g. “dryness”, 

“dry spell”, etc.) with the terms ‘drought’ and ‘droughts’ finally chosen to identify relevant 

newspaper articles. All search results were assessed so as to remove articles that used the 

term for descriptive or other purposes resulting in a total of 6,309 drought related articles. 

Using a modification of European Drought Impact report Inventory (EDII; Stahl et al., 2012) 

adapted to cater for the nature of the Irish newspaper data, returned articles were assigned to 

15 drought impact categories (i.e. agriculture and livestock farming; forestry; freshwater 

aquaculture and fisheries; energy and industry; waterborne transportation; tourism and 

recreation; public water supply; water quality; freshwater ecosystem: habitats, plants and 

wildlife; terrestrial ecosystem: habitats, plants and wildlife; soil systems; wildfires; air 

quality; human health and public safety; conflicts), with the possibility of each article being 

assigned to one or more categories depending on impacts described. Where the described 

impact could be categorised under multiple categories the final decision on the associated 

grouping was determined by the authors to ensure consistency in classifications across the 

entire dataset. For each drought impact, i.e. the occurrence of an article that references a 

specific impact related to a drought event and fitting to one of the pre-defined impact types, 

information including the date of publication, date of impact, location, newspaper title and a 

quote from the article were all included in the database. 

In total, more than 11,500 individual drought impact reports are included in the IDID dataset. 

The number of titles contributing to the INA remains relatively stable for the period post-

1900, while having good spatial coverage across Irish counties. Therefore, we employ output 

from the IDID for the period 1900-2016, concurrent with the last year of available 

meteorological and hydrological data. Of the 15 drought impact categories we retain all but 

the Human Health and Public Safety and Conflicts categories due to a lack of articles in those 

categories. The resulting 13 drought impact categories were further grouped into two simple 

categories signified as land-based impact reports (related to agriculture and livestock farming, 

terrestrial ecosystems, soil systems, wildfires, air quality, and forestry) and hydrological-

based impact reports (related to aquaculture and fisheries, waterborne transport, energy and 

industry, tourism and recreation, public water supply, water quality and freshwater 

ecosystems). We matched the associated year and month of each reported impact in the IDID 

to the drought indices on that date. Impact reports which did not include a year and month of 

impact were excluded from the analysis. Impact reports in the IDID are not systematically 

compiled for catchments, therefore, we tallied reports for each county, the boundaries of 

which have remained largely unchanged over the period of assessment and assigned them to 

one of our three clusters of catchments (see Figure 1b). Impact reports that did not provide a 

specific location or from which the relevant county could not be derived were excluded from 

the analysis. When a county straddles two clusters of catchments, impact reports are 

associated with the cluster overlapping the largest area of that county. Counties with no study 

catchment(s) contained within their boundaries (five in total) were excluded from the 

assessment. An inventory of article numbers, by county, allocated cluster and drought impact 

sub-category is given in Table S1. For each cluster, the cumulative number of drought impact 

reports were then calculated for each month from 1900-2016. 



2.3 Model generation and analysis 

Logistic regression and Generalised Additive Models (GAMS) have been previously used to 

link drought indices to impacts (Bachmair et al., 2017; Parsons et al., 2019; Stagge et al., 

2015a). We take a similar approach by applying binomial logistic regression models to 

establish relationships between SPI and SSI indices with drought impact occurrence (based 

on article counts). First, we transform the dependent variable (impact articles) into a binary 

series by noting the occurrence/non-occurrence of articles. Logistic regression was then used 

to determine the odds of event occurrence (impact article), by relating the conditional 

expectation of the response variable to a combination of linear predictor variables (drought 

indices). This link was obtained using a logit, or log odds function typically applied to derive 

the probability of occurrence from regression models (see Morgan et al., 1988). Logistic 

regressions were fit using the Generalised Additive Model (GAM) framework which enables 

logistic regressions to be applied with a smoothing function for selected predictor variables 

(month values) to account for non-linear components in series (e.g. the seasonal components 

of monthly SPI/SSI values). To convert the log-odds predicted output to a simple probability 

output (i.e. to generate impact probability values in the range from 0 to 1) the inverse logit of 

the predicted values were found. Values could then be easily categorised by their probability 

of impact and assessed for each model. 

Model fitting and subsequent predictions were carried out in the R environment using the 

‘mgcv’ package (Wood, 2012). Individual models were generated for each cluster linking SPI 

values to land- and SSI values to hydrological-based articles. Model predictor variables 

included standardised drought indices, smoothed month values and year values. Month values 

account for seasonal variations in drought impact reporting probability, whilst year values 

allow for any trends in the data (cf. Parsons et al., 2019).  

Weights were derived and then applied to each model to account for cases where more than 

one drought impact article occurred in a given month. For each model we determined the 

weights by reciprocally ranking the total monthly article numbers. The procedure was as 

follows: Step 1, the date (month/year) with the highest number of articles was ranked as one 

(rank1 = 1), the second highest as two (rank2 = 2), etc., until all dates were assigned a rank. 

Dates with the same number of articles were given the same rank, including dates with zero 

articles which were assigned the lowest rank. Step 2, the Reciprocal Rank was found for this 

series of ranked values, as shown in equation 1, with i representing the rank number, Q 

representing the total number of distinct article values. Step 3, the resultant series of values 

was then applied as the weighting factor in the final model, in the order of the original time-

series. 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑅𝑎𝑛𝑘 = ∑
1

𝑟𝑎𝑛𝑘𝑖

𝑄

𝑖=1
      (1) 

Reciprocal ranked weights were determined separately for each model. Dependent variable 

values for each model were represented by the binary occurrence/non-occurrence of monthly 



drought impact articles (land- or hydrological-based) for each cluster, with final model output 

returning the probability of occurrence of articles for given SI values.  

Following Parsons et al. (2019), we test the model by initially generating logistic regression 

models with a single predictor consisting of either SPI or SSI at accumulations of 1, 2, 3, 4, 5, 

6, 9, 12 or 18 months. Only one drought index accumulation period was considered in each 

model as indices for overlapping periods tend to be highly correlated. Model performances 

were assessed using the different accumulation periods, with best performing accumulation 

periods for each cluster identified for the 1900-2016 period and retained. Model performance 

was assessed by evaluating the amount of explained variance, adjusted for sample size 

(R2adj). Subsequently, models were regenerated with the inclusion of smoothed monthly 

values (to account for seasonality of reported impacts) as well as year (to account for any 

trend). Smoothing was carried out using the Restricted Maximum Likelihood (REML) 

approach to estimate components of variance resulting from the unbalancing caused by the 

nonlinear, seasonal impacts of the monthly data. Models were then re-evaluated to examine 

improvement in skill.   

For each cluster, models were used to relate SPI and SSI to predicted impact report 

probabilities, i.e., the likelihood of a drought related newspaper article for a given SPI or SSI 

value. To aid interpretation, we classify reported impact probability scores as follows: ‘very 

low’ (0-0.19), ‘low’ (0.20-0.39), ‘medium’ (0.40-0.59), ‘high’ (0.60-0.79), and ‘very high’ 

(0.80-1.00). We primarily focus on the high probability of reported impacts threshold (≥0.60) 

as it represents an above average likelihood of impact report occurrence. We identify 

temporal and spatial variations in drought impact reports for each catchment cluster over the 

full 116 years using SPI and SSI values at that threshold and at the lower limit of -3 SI, 

matching that used by Parsons et al., 2019. We also investigate the variation in reported 

impact probabilities at annual and monthly timescales with the latter allowing for assessment 

of how reported impact likelihood changes within clusters over the course of a year. Annual 

probabilities were derived by finding the mean of the monthly probabilities for each year 

across the 1900-2016 period. Finally, we assess homogeneity in reported drought impact 

likelihoods by identifying any significant change points in the drought impact report series 

for each cluster, using the non-parametric Pettitt (1979) test. Theil-Sen slope estimates (Sen, 

1968) were also calculated to identify significant trends in the series. We subsequently 

investigate how impact report likelihoods (for SPI and SSI values of -3) and SPI and SSI 

values required to exceed the high likelihood (0.6) threshold have changed in each cluster 

pre/post break point. 

3. Results 

  

3.1 Indices and impact data 

SPI and SSI were derived for each cluster for the period 1900-2016 for accumulations of 1, 2, 

3, 4, 5, 6, 9, 12 and 18 months (sample plots are shown in Figures S1 and S2). Across the 

period there are several extreme events identifiable in both the SPI and SSI series, and over 

multiple accumulation periods. These include the 1933-1935, 1953-1954, 1971-1972 and 



1975-1977 droughts. Other prominent events in the SPI series are less notable in the SSI 

equivalent, such as the 1911-1912 and 1983-1984 droughts, whilst events such as the 2003-

2004 drought show greater prominence in the SSI series. Figure 2 plots the annual number of 

articles by cluster over the period 1900-2016. Notable are the high number of articles for 

Cluster 3 and the large decrease in land-based drought reports in both Clusters 1 and 2 during 

recent decades. Some of the largest meteorological and hydrological drought article numbers 

occur in 1921, 1938, 1940, 1949, 1959, 1975 and 1984. Differences in article numbers for 

certain events are identifiable between clusters and article types. Although most droughts 

coincide with article occurrence (e.g. the 1911-1912 and 1975 droughts) others show fewer 

impact reports, despite being classified as severe or extreme droughts by the standardised 

indices (e.g. the 1933-1934 and 1972-1973 droughts). Conversely, events such as the 1921 

and 1949 droughts do not rank as significant droughts in SPI- and SSI-12 series despite 

producing some of the highest number of drought impact reports. It should be noted however 

that the level of agreement between drought impact reports and indices is dependent on the 

accumulation period applied.  

 

Figure 2. Distribution of land-based (left) and hydrological-based (right) drought impact 

reports (annual totals) for each cluster (bottom of each panel) are displayed for the period 1900-

2016. Also displayed are related SI values (top of each panel; SPI-12 on the left and SSI-12 on 

the right). 

3.2 Model performance analysis 

Logistic regression and GAMs show the relationship between SPI/SSI and land-

/hydrological-based impact reports in each cluster. Figure 3 displays results of this 

assessment with R2adj values for different SPI/SSI accumulation periods plotted for land- 



and hydrological-based impact reports (lighter coloured bars). For hydrological-based impact 

reports SSI-2 performed best across all three clusters (R2adj values of 0.14 (p<0.05; Cluster 

1), 0.18 (p< 0.05; Cluster 2) and 0.25 (p< 0.05; Cluster 3)). For land-based impact reports 

SPI-3 performed best having the highest R2adj score for Cluster 1 (0.10; p<0.05) and 3 (0.17; 

p<0.05). For Cluster 2, SPI-2 performed marginally better than SPI-3 (0.11; p<0.05 versus 

0.10 (p<0.05). For simplicity, SPI-3 was adopted as the best predictor of land-based drought 

impact reports in all clusters. 

Following Parson et al. (2019) both month and year predictor variables were added to each of 

the best performing single variable models (i.e. SPI-3 and SSI-2), with monthly smoothing 

implemented using the REML method (see Section 2.3). Model performance was again 

assessed using R2adj, with results presented in Figure 3 (darker coloured bars). Across all 

clusters, inclusion of month led to significant model improvements. Final model structures 

for land- and hydrological-based drought impact reports are given in Equations 2 and 3, with 

additional performance metrics provided in Table 1. For reported land-based impacts (Eq. 1) 

model performance is best for Cluster 3 (R2adj = 0.49; p<0.05), with Cluster 1 and 2 having 

R2adj values of 0.34 (p<0.05). For reported hydrological-based impacts (Eq. 2) model 

performance is greater than the land-based equivalent for Cluster 1, 2 whilst for Cluster 3 it is 

lower, with R2adj values of 0.38, 0.35 and 0.42 respectively (all with p-values of <0.05). 

SPI– 3 +  s(month)  +  year       (2) 

SSI– 2 +  s(month)  +  year       (3) 

 

 



Figure 3. Adjusted R
2
 values of the logistic regression models for selected SPI/SSI accumulation 

periods (n) when simulating monthly land- (left) and hydrological-based (right) impact articles 

for each cluster during 1900-2016. Results are also shown for models including month and year 

(darker colours). 

Receiver Operator Characteristic (ROC) curves, which demonstrate the ability of models to 

correctly predict the occurrence or non-occurrence of an event, are shown in Figure 4 (see 

Stagge et al. (2015a) for a similar application). Values are assessed for increasing thresholds 

across the [0-1] range. For a perfect model the proportion of correctly identified impact 

articles is equal to 1 across all threshold values and will have an Area Under the Curve 

(AUC) value of 1. A model with zero skill produces an AUC of 0.5 and will lie on the 

diagonal (0:1) line. Here, both land- and hydrological-based models show good skill at 

correctly classifying drought impact reports, with the former performing marginally better 

overall. For land-based impact reports AUC scores are highest for Cluster 3 (0.90) and lowest 

for Cluster 2 (0.85). For hydrological-based impact reports AUC scores are highest for 

Cluster 1 and 3 (0.87) and lowest for Cluster 2 (0.85). 

Table 1. Performance indicators for model (SPI-3 + s(month) + year) generated for land-based 

impact articles and model (SSI-2 + s(month) + year) generated for hydrological-based impact 

articles (1900-2016). 

Model Cluster 

No. 

Intercep

t Co-eff. 

Indices 

Co-eff. 

Year 

Co-eff. 

Adj

R
2
 

P-

value 

% 

Devianc

e 

AU

C            

AIC BIC 

           

 

1 17.30 -1.11 -0.01 0.34 0.001 35.07 0.87 13.61 46.49 

SPI-3 + 

s(mont

h) + 

year 

2 25.11 -1.04 -0.01 0.34 0.001 33.55 0.85 13.27 46.24 

 

3 21.34 -1.43 -0.01 0.49 0.002 45.94 0.90 12.90 46.00 

 

          

 

1 2.64 -1.28 0.00 0.38 0.001 37.90 0.87 13.42 46.39 

SSI-2 + 

s(mont

h) + 

year 

2 19.30 -1.37 -0.01 0.35 0.001 34.36 0.85 12.71 44.68 

 

3 20.22 -1.58 -0.01 0.42 0.002 38.21 0.86 12.35 43.83 

 



 

Figure 4. Receiver Operating Characteristic (ROC) curves displaying performance of the 

logistic regression models generated using land-based newspaper articles and SPI-3 indices (left) 

and for models generated using hydrological-based newspaper articles and SSI-2 indices (right) 

for each cluster.  

3.3 Linking indices to reported impacts 

Derived models were used to determine the likelihood of impact reporting at annual and 

monthly timescales. Initially, an examination of outputs from models generated using 

annualised SPI and SSI at 1, 2, 3, 4, 5, 6, 9, 12 and 18 month accumulations was carried out 

revealing that SPI-3 and SSI-2 generated the highest likelihoods of drought impacts across 

clusters, specifically at low deficits. Impact likelihood values reduced markedly for 

accumulations above and below 3 and 2 months respectively. Notably, the patterns of impact 

likelihoods across clusters remained similar for all accumulations. As SPI-3 and SSI-2 

produced the highest impact likelihoods and best model performances for land-based and 

hydrological-based impact reports they were retained for further analysis. Figure 5 shows 

reported impact probabilities on an annual basis over the period 1900-2016. Cluster 3 has the 

highest reported impact probabilities for both SPI and SSI values. Clusters 1 shows the 

lowest reported impact probabilities for any given SPI value. For SSI-2, Cluster 1 shows a 

higher likelihood of impact reports than Cluster 2 for modest deficits, while the opposite is 

the case for more extreme SSI-2 deficits. Figure 5 also identifies SPI/SSI thresholds resulting 

in at least a high likelihood of impact reports (0.60). For land-based impact reports SPI-3 ≤ -

2.68 for Cluster 1, ≤ -2.35 for Cluster 2 and ≤ -1.98 for Cluster 3 are identified as thresholds 

for high impact probabilities on an annual scale. For hydrological-based impact reports the 

equivalent values are SSI-2 ≤ -2.48 for Cluster 1, ≤ -2.02 for Cluster 2 and ≤ -1.60 for Cluster 

3. Cluster 3 is identified as most likely to experience both land- and hydrological-based 



drought impact reports, whereas Cluster 1 the least likely. Indices values required to reach 

each land- and hydrological-based drought impact report threshold are given in Table 4. 

 

Figure 5. Predicted probability of reported impacts (annual) from models generated using land-

based impact articles and SPI-3 indices (left) and from models using hydrological-based impact 

articles and SSI-2 indices (right). Impact likelihoods for each cluster over the period 1900-2016 

are shown for indices values ranging from -3 to 3. Indices values resulting in high reported 

impact probabilities (0.60) are denoted by the dashed horizontal line. 

Figure 6 displays results for likelihoods of monthly land-based drought impact reports. There 

are large variations in the probability of reported impacts across months and clusters. 

December and January show very low to low impact report probabilities, even for extreme 

deficits in SPI-3. February is the winter month with highest land-based impact report 

probabilities, reaching moderate probabilities for deficits of -3 SPI-3 in Cluster 2 and high 

probabilities in Cluster 3. Excluding December, Cluster 3 consistently shows the highest 

probability of impact reports in all months. The 0.6 threshold (dashed black horizontal lines) 

helps identify SPI-3 deficit values resulting in a high likelihood of impact reports. Notably, in 

summer (JJA) months only very modest SPI-3 deficits (not less than -1.2 SI) are required to 

reach this threshold for land-based impact reports in Cluster 3. July (closely followed by 

June) is the month most prone to reported impacts, with the most modest SPI-3 deficits 

resulting in high impact report probabilities (-0.90 for Cluster 1, -0.73 for Cluster 2 and -0.28 

for Cluster 3). In autumn (SON), the SPI-3 deficits required to reach high reported impact 

probabilities become more extreme, with Cluster 3 remaining the most vulnerable. 

Throughout most months (excluding winter) there is little difference in land-based drought 

impact report probabilities between Clusters 1 and 2.   



 

Figure 6. Predicted probability of reported impacts (monthly) from models generated using 

land-based impact articles and SPI-3 indices. Impact likelihoods for each cluster over the period 

1900-2016 are shown for indices values ranging from -3 to 3. Indices values for each cluster 

resulting in a high reported impact probabilities (0.60) are also identified (dashed horizontal 

line). 

Figure 7 displays monthly impact likelihoods for hydrological-based impact reports. Cluster 3 

shows the highest likelihood of reported impacts across all months, particularly in autumn 

(SON), winter (DJF) and early spring. However, differences with Cluster 1 and 2 during late 

spring and summer, especially from May to August, are minimal, with Cluster 1 showing 

higher likelihood of impacts at low deficits during these months. From June through to 

August Cluster 2 is least sensitive to hydrological-based impact reports. Late autumn and 

winter months show the greatest differences between clusters with the likelihood of 

hydrological-based impacts in Cluster 3 markedly greater than that for Cluster 1 and, 

marginally greater than Cluster 2 from October till March. Cluster 3 consistently reaches the 

threshold of high probability of reported impacts across the year, but only for extreme SSI-2 

deficits in winter months. During summer months, deficits of close to -1 SSI-2 are required to 

reach the 0.6 high probability of reported impacts threshold in most clusters. July is the 

month most prone to hydrological-based impact reporting, with the most modest SSI-2 

deficits resulting in high impact report probabilities (-0.72 for Cluster 1, -0.98 for Cluster 2 



and -0.80 for Cluster 3). The lowest reported impact probabilities are in December for Cluster 

1 (very low probabilities) and January for Clusters 2 and 3 (moderate and high probabilities) 

for SSI-2 values of -3. 

 

Figure 7. As in Figure 6 but for hydrological-based impact articles and SSI-2 indices.  

 

3.4 Sensitivity of results to impacts baseline 

All clusters display a negative year coefficient for land- and hydrological-based impact 

reports, with the exception of Cluster 1 for hydrological-based reported impacts (Table 1). 

Significant negative trends across all clusters were confirmed using Theil-Sens slope testing, 

again with the exception of hydrological-based reported impacts for Cluster 1. This suggests 

that during the 1900-2016 period there was an overall decline in reported drought impacts. 

According to the Pettitt test, there are notable step changes in the number of impact articles 

for each cluster and impact type, with statistically significant changes (p<0.05) identifiable in 

the land-based articles (see Table 2). 

 



Table 2. Step change month and year identified for land and hydrological related articles 

grouped by each cluster over the 1900-2016 period. 

Article Type Cluster Month Year p-value Direction 

      

 

1 6 1985 0.03 downward 

Land              

-based 

2 7 1961 0.01 downward 

 
3 9 1961 0.02 downward 

      
 1 8 1977 0.47 downward 

Hydrological 

-based 

2 6 1961 0.18 downward 

 
3 9 1959 0.08 downward 

 

In Cluster 1 a significant downward step change in land-based drought impact articles was 

identified in 1985. In Cluster 2 and 3 significant downward changes were identified in 1961. 

For reported hydrological-based drought impacts, no significant changes (0.05 level) were 

found. Given the prominence of 1961 as a step change in drought impacts series, we evaluate 

the changing likelihood of reported impacts pre and post-1961. Table 3 shows model results 

and coefficients for the pre/post-1961 periods. Modest reductions in skill between the 1900-

1960 and 1961-2016 periods are evident with greatest reductions in R2adj for land-based 

impact report models occurring in Cluster 2 (from 0.36 to 0.25; both p<0.05). The largest 

reduction in R2adj for hydrological-based impact models occurs for Cluster 3 (from 0.46 to 

0.31; both p<0.05). The least change in R2adj between periods occurs for Cluster 1, land-

based impact models. AUC scores show little change relative to the earlier period. 

Reductions in model performance post-1961 can be partially attributed to reduced occurrence 

of drought in the latter period as identified by Noone et al. (2017), while article numbers also 

fall by 59 % (Cluster 1), 69 % (Cluster 2) and 46 % (Cluster 3) for land- and 40 % (Cluster 

1), 58 % (Cluster 2) and 63 % (Cluster 3) for hydrological-based impact reports.  

Table 3. Performance indicators for model (SPI-3 + s(month) + year) generated for land-based 

impact articles and model (SSI-2 + s(month) + year) generated for hydrological-based impact 

articles (1900-1960 & 1961-2016). 

Model   

(Period) 

Clust

er No. 

Interce

pt Co-

eff. 

Indic

es 

Co-

eff. 

Year 

Co-

eff. 

Adjust

ed R
2
 

P-

value 

% 

Devian

ce 

AU

C            

AIC BIC 

           
SPI-3 +  1 -42.10 -1.01 0.02 0.37 0.028 36.46 0.8

7 

13.5

2 

42.0

2 s(month) + 

year 

2 -0.51 -1.01 0.00 0.36 0.007 31.98 0.8

3 

12.8

7 

41.1

4 (1900-1960) 3 -15.39 -1.48 0.01 0.52 0.007 48.66 0.9

0 

12.5

4 

40.9

8 
 

          

SSI-2 + 1 -65.10 -1.34 0.03 0.47 0.025 45.23 0.9

0 

13.2

8 

41.9

1 s(month) + 

year 

2 -2.82 -1.36 0.00 0.37 0.003 34.27 0.8

3 

12.3

6 

39.7

5 (1900-1960) 3 -25.41 -1.66 0.01 0.46 0.001 41.69 0.8

6 

11.9

7 

38.9

8            



SPI-3 + 1 50.52 -1.37 -0.03 0.36 0.053 38.54 0.8

9 

11.8

0 

38.4

1 s(month) + 

year 

2 6.27 -1.02 -0.01 0.25 0.007 30.63 0.8

7 

11.8

7 

38.6

4 (1961-2016) 3 -0.91 -1.28 0.00 0.41 0.007 40.85 0.8

9 

11.9

2 

38.8

1 
 

          

SSI-2 + 1 11.63 -1.28 -0.01 0.34 0.027 34.58 0.8

6 

11.7

6 

38.2

7 s(month) + 

year 

2 19.80 -1.22 -0.01 0.28 0.000 29.91 0.8

6 

11.6

6 

37.9

4 (1961-2016) 3 38.78 -1.30 -0.02 0.31 0.001 30.33 0.8

5 

11.1

6 

36.3

1  

 

Figure 8. Predicted probability of reported impacts (annual) from models generated using land-

based impact articles and SPI-3 indices (left panel) and from hydrological-based impact articles 

and SSI-2 indices (right panel). Impact likelihoods for each cluster over the baseline period A: 

1900-1960 (i.e. Clusters 1A, 2A and 3A) and baseline period B: 1961-2016 (i.e. Clusters 1B, 2B 

and 3B) are shown in each panel for indices values ranging from -3 to 3. Indices values for each 

cluster resulting in a high reported impact probabilities (0.60) are also identified (dashed 

horizontal line). 

 

Table 4. SPI-3 and SSI-2 values producing incremental increasing probabilities of impact 

reports from very low to very high, for land- and hydrological-based models for the full period 

1900-2016 and sub-periods 1900-1960 and 1961-2016. 

Index (period) Cluster 

Number 

Very 

Low: 

(0.00-

1.99) 

Low:   

(0.20-

0.39) 

Moderate: 

(0.40-0.59) 

High:  

(0.60-0.79) 

Very 

High: 

(0.80-

1.00) 

       

 

1 >3.00 -0.6 -1.65 -2.68 <-3.00 

SPI-3 (1900-2016) 2 >3.00 -0.42 -1.41 -2.35 <-3.00 

 

3 >3.00 -0.17 -1.07 -1.98 <-3.00 

 

 

 

    

 

1 >3.00 -0.46 -1.49 -2.48 <-3.00 



SSI-2 (1900-2016) 2 >3.00 -0.57 -1.33 -2.02 -2.83 

 

3 >3.00 -0.39 -1.03 -1.6 -2.27 

       

 1 >3.00 -0.47 -2.27 <-3.00 <-3.00 

SPI-3 (1900-1960) 2 >3.00 -0.06 -1.33 -2.51 <-3.00 

 3 >3.00 0.12 -0.97 -2.08 <-3.00 

       

 1 >3.00 -0.47 -2 <-3.00 <-3.00 

SSI-2 (1900-1960) 2 >3.00 -0.39 -1.26 -2.04 <-2.98 

 3 >3.00 -0.23 -0.99 -1.65 <-2.43 

       

 1 >3.00 -0.93 -1.66 -2.32 <-3.00 

SPI-3 (1961-2016) 2 >3.00 -1.03 -2.21 <-3.00 <-3.00 

 3 >3.00 -0.6 -1.65 -2.63 <-3.00 

       

 1 >3.00 -0.66 -1.52 -2.29 <-3.00 

SSI-2 (1961-2016) 2 >3.00 -0.95 -1.82 -2.58 <-3.00 

 3 >3.00 -0.71 -1.47 -2.06 <-2.81 

 

Figure 8 shows annual results for reported impact likelihoods for land- and hydrological-

based drought, with groupings A and B representing results derived from the 1900-1960 and 

1961-2016 baseline periods, respectively for Clusters 1, 2 and 3. Differences between 

reported impact probability curves are apparent for all three clusters and both impact 

categories, but are greater for land-based impact reports where agricultural and livestock 

farming dominate (91% and 79% of land-based reports across all clusters for the 1900-1960 

and 1961-2016 periods respectively). For both Clusters 2 and 3 the 1961-2016 period returns 

lower likelihoods of drought impact reports. For Cluster 1 however larger SPI-3 deficits 

produce a greater probability of impact reports for the 1961-2016 period, whilst for values 

closer to zero the risk is higher for the 1900-1960 period, indicating that the likelihood of 

reported impacts has increased for extreme droughts and decreased for more moderate 

droughts. For SSI-2 both Cluster 2 and 3 show lower likelihoods of reported hydrological-

based drought impacts for the 1961-2016 period, however the reduction is not as large as seen 

for land-based impacts. Cluster 1 also shows a higher probability of hydrological-based 

impact reports for the 1961-2016 period but only at larger SSI-2 deficits. 

The reduction in impact report probabilities for the 1961-2016 period is reflected in an 

increase in deficits required to reach the high likelihood of impact threshold (0.6), with 

differences greatest in Cluster 1 catchments. For Cluster 3 land-based impact reports, the SPI-

3 value associated with high impact report probabilities changes from -2.08 SPI-3 for 1900-

1960 to -2.63 SPI-3 for 1961-2016. For hydrological-based drought in the same cluster, 

values change from -1.65 to -2.06 SSI-2. For Cluster 2 catchments the high impact 

probability for land-based articles occurs at -2.51 SPI-3 for the 1900-1960 period and <-3.00 



SPI-3 for the 1961-2016 period. Hydrological-based impact reports change from -2.04 to -

2.58 SSI-2. The largest change in deficit thresholds returning high likelihoods of reported 

impacts is in Cluster 1 for both land- and hydrological-based droughts (<-3.00 to -2.32 SPI-3 

and <-3.00 to -2.29 SSI-2). Table 4 provides a cluster specific breakdown of SSI-2 and SPI-3 

values required to reach each reported impact probability threshold.  

 

Figure 9. Predicted probability of reported impacts (monthly) from models generated using 

land-based impact articles and SPI-3 indices. Impact likelihoods for each cluster over the 

baseline period A: 1900-1960 (i.e. Clusters 1A, 2A and 3A) and baseline period B: 1961-2016 

(i.e. Clusters 1B, 2B and 3B) are shown in each panel for indices values ranging from -3 to 3. 

Indices values for each cluster resulting in a high reported impact probabilities (0.60) are also 

identified (dashed horizontal line). 

Figures 9 and 10 repeat the analysis on a monthly basis for land- and hydrological-based 

reported impacts, respectively. The likelihood of land-based impacts being reported in 

Clusters 2 and 3 is consistently lower for all months for the 1961-2016 period, with the 

exception of January for Cluster 3. The opposite is the case for Cluster 1 where at larger 

deficits the latter period displays greater likelihoods of reported drought impacts whilst at 

more modest deficits the earlier period dominates from April to October. For the 1961-2016 

period, high impact report probabilities at the 0.6 threshold are most easily attained in June 



for Cluster 1 and July for Cluster 2 and 3 with corresponding SPI-3 values of -1.38, -1.56 and 

-0.93, compared to -0.75, -0.51, 0.01  (all in July) for equivalent values derived from the 

1900-1960 period. The lowest likelihood of reported impacts is in January for all Clusters, 

with the exception for Cluster 3 (1961-2016) which occurs in December. All clusters have 

low to very low impact report likelihoods at -3 SPI-3. Between baseline periods, impact 

likelihoods also differ markedly for hydrological-based articles (Figure 10). For the 1961-

2016 period, Cluster 3 shows the greatest sensitivity to drought impacts in each month. Also, 

across the year Cluster 1 consistently produces greater likelihoods of reported impacts at 

more extreme deficits in the later period compared to 1900-1960. As with land-based impact 

reports (excluding January in Cluster 3), the likelihood of hydrological-based impact reports 

in Cluster 2 and Cluster 3 is consistently lower for all months for the 1961-2016 period. The 

month with the greatest likelihood of reported hydrological-based impacts for 1961-2016 is 

July with SSI-2 values required to reach the (0.6) threshold having values of -1.23, -1.54 and 

-1.36 SSI-2 in Clusters 1 to 3 compared to -0.57, -0.92 and -0.76 SSI-2 for the 1900-1960 

period. 

 

4. Discussion and Conclusions 

 

Employing drought indices derived from historic river flow and precipitation reconstructions, 

together with a database of newspaper articles on historical drought impacts, we have shown 

that it is possible to link historic newspaper articles with drought indicators using GLMs at 

the regional scale. The process of model development closely followed Parsons et al. (2019) 

and Stagge et al. (2015a) who both showed the effectiveness of logistic regression models in 

linking drought indices and reported impacts. Our model evaluation highlighted the strong 

relationship between short accumulation SPI/SSI periods and drought impact reports in 

Ireland. An analysis of model performance scores at accumulations of 1, 2, 3, 4, 5, 6, 9, 12 

and 18 months together with an examination of model outputs showed that SPI-3 was best at 

modelling land-based drought impact reports across each catchment cluster. This is consistent 

with Bachmair et al. (2018), Haro-Monteagudo et al. (2018) and Naumann et al. (2015), each 

of whom found SPI-3 correlated well with reported agricultural impacts. For hydrological 

drought, SSI-2 generated the best model performance scores and the highest impact 

likelihood values of all accumulations.  

 



 

Figure 10 As in Figure 9 but for hydrological-based impact articles and SSI-2 indices. 

Model performance varied by region, but overall Cluster 3 in the east/southeast produced the 

best performing land and hydrological-based models. The weakest land-based model was 

Cluster 1 in the northwest whilst the weakest hydrological-based model was Cluster 2 in the 

southwest. Drought impact article numbers have a notable influence on model performance 

with Cluster 3 catchments, containing the greatest number of land- and hydrological-based 

articles, producing better results than those for Cluster 1 and 2. Overall, we find that Cluster 1 

and 2 models derived from land-based articles and SPI indices perform better than the 

hydrological-based equivalent, whilst the opposite is the case for Cluster 3 models. 

Catchment characteristics likely influence model performance with Cluster 3 catchments, 

which tend to have greater groundwater storage (O’Connor et al., 2022a) and are more 

influenced by the non-linear propagation of drought through such catchment systems, 

producing lower model performances than the faster responding catchments in Cluster 1 and 

2. The addition of smoothing to monthly values considerably improved model performance 

(by a factor of 3.1 on average), as was found by Parsons et al. (2019). Weighting of 

predictors by reciprocal rank of drought article occurrence further improved model 

performance (by a factor of 1.4 on average). Performance scores for our models (R2adj and 

AUC) compare favourably with similar studies (Parsons et al., 2019; Stagge et al., 2015a).  



Our results show that the likelihood of drought impacts being reported is influenced by 

location, drought type and time-of-year. On an annual basis Cluster 3 catchments consistently 

showed the greatest propensity for land- and hydrological-based impact reports, whereas 

Cluster 1 showed the least likelihood for land- and hydrological-based impact reports at more 

extreme deficits. At more moderate deficits Cluster 2 showed the least likelihood for 

hydrological-based impact reports. On a monthly basis, our results indicate large intra-annual 

variations in the probabilities of reported drought impacts across clusters. In all clusters and 

for both impact categories, summer shows the highest reported impact likelihoods, which is 

unsurprising as agricultural activities (crop and livestock production) and water use 

(consumption) increase markedly in these warmer months. For land-based impacts, all 

clusters display a high probability of impact reports in July, brought about by only very 

modest SPI-3 deficits (not less than -1), indicating a very high vulnerability to drought in that 

month. Conversely, winter months show lower probabilities of drought impacts being 

reported, with deficits as extreme as <-3 SPI-3 in January resulting in low likelihoods across 

clusters. Previous studies on drought characterisation in Ireland (e.g. Noone et al., 2017, 

O’Connor et al., 2022a) have employed a common year-round threshold of -1 SPI to identify 

the onset of drought events. These finding suggest that the use of such fixed thresholds for 

drought analysis in Ireland, which has a strong seasonal cycle in both the mean and 

variability of precipitation and flows, inaccurately captures drought conditions. Our work 

suggests that non-stationary, location dependent threshold values would more accurately 

capture the changing impacts of drought across seasons on the island.  

We find a close relationship between hydrological drought impact reporting and catchment 

characteristics. Despite revealing the lowest likelihood of reported land-based impacts, for 

hydrological-based impact reports Cluster 1 catchments show the highest likelihood of 

recorded impacts at low deficits in summer months. These findings are consistent with 

O’Connor et al. (2022a) who identify Cluster 1 catchments as being the most susceptible to 

hydrological drought in summer due to the lack of groundwater storage. Cluster 3 catchments 

show the highest probabilities of impact reporting from September through April where even 

in December at more extreme deficits there exists a very high likelihood of drought related 

impact reports. These catchments tend to have higher groundwater storage and more delayed 

hydrological drought onset, consistent with higher impact report probabilities from 

September through April. As per many aspects of the analysis, Cluster 2 catchments show 

likelihood patterns intermediate between Cluster 1 and 3.   

Inclusion of the ‘year’ predictor variable in our model revealed a decreasing trend in reported 

drought impacts across all three clusters for both land- and hydrological-based models during 

the 1900-2016 period, a result confirmed by Theil-Sens slope testing. We also identify step 

changes towards fewer drought impact reports for recent decades in each cluster, especially 

for land-based impact reports. As drought reports in this category are dominated by impacts 

on agricultural and livestock farming this may be indicative of autonomous adaptation in that 

sector. These results differ to the UK where Parsons et al. (2019) found a marked increase in 

the probability of reported drought impacts in the agricultural sector. Similarly, Stagge et al. 

(2015a) found notable differences in trends in agricultural drought impacts between five 



European countries. Both studies linked possible biases in reporting of impacts, resulting 

from a change in the actual or perceived drought vulnerability of farms and/or changes in 

reporting practices, as a cause of such deviations, something that may well affect results 

obtained here. Furthermore, it should be noted that the period since the 1980s in Ireland has 

been relatively drought poor (Wilby et al., 2015; Noone et al., 2017), as reflected by the 

relative lack of articles on the subject. For the 1961-2016 period the risk of reported land-

based impacts is lower for Clusters 2 and 3. Changes in the reporting of hydrological drought 

impacts are less extreme but nevertheless notable and coincide with findings by O’Connor et 

al. (2022a) showing reduced hydrological drought occurrence in recent years. However, 

Cluster 1 catchments contradict this trend, whereby an increased probability of drought 

impact reports for extreme deficits in the 1961-2016 period was found. One plausible 

explanation for the difference is that the economic growth and industrial development that 

occurred in Ireland from the 1960s (Daly, 2016), which likely resulted in reduced 

vulnerability to drought impacts, was not universally felt across the island with the northwest 

the latest to benefit from these changes, as suggested by Martin and Townroe (2013). 

However drought impacts are not a direct measure of, but a symptom of drought vulnerability 

(Wang et al., 2020b). Furthermore, drought vulnerability is also a function of exposure, 

sensitivity and adaptive capacity (Smit and Wandel, 2006) so accurately apportioning 

attribution for such changes is not possible without a more in-depth analysis. 

Linking drought metrics and reported impacts at the regional scale opens the possibility for 

better informing drought monitoring and warning systems (Bachmair et al., 2016). This work 

identifies the accumulation periods for SSI and SPI that are most closely associated with 

drought impact reporting and identifies thresholds for impact probabilities associated with 

different values of each drought metric for various catchment types. Although we detect a 

decrease in the probability of drought impact reports for some catchment clusters in recent 

decades, this may be an artefact of reduced drought occurrence in that period given the 

widespread and significant impacts of the 2018 drought in Ireland (Dillon et al., 2018; Falzoi 

et al., 2019; Government of Ireland, 2020). Moreover, we show the value of newspaper 

archives as a source of information on drought impacts. The IDID (Jobbová et al., 2022a) 

provides an unprecedented resource for investigating drought impacts in Ireland, as well as 

new opportunities for evaluating societal effects and responses to drought events.  

There are a number of limitations to note. Historic precipitation reconstructions from which 

SPI indices have been generated are subject to varying uncertainties across seasons (Casty et 

al., 2007). Flow values from which SSI values have been derived also have uncertainties, 

relating to the underlying precipitation data and rainfall runoff models used in their 

generation. Considerable efforts were made to address these concerns using different model 

structures and datasets to evaluate the quality of the reconstructions (see O’Connor et al., 

2020). Whilst drought impact reports have been meticulously assessed and grouped, 

uncertainty arises from differences in the duration, frequency, spatial extent and regional 

density of the newspaper publications (see Jobbová et al., 2022b). For example, some 

publications were only in print in the early half of the 20th century whilst others commenced 

in the latter half of the century. The frequency of publication also differed between some 



newspapers whilst smaller regional publications had a greater local emphasis in reports. 

Furthermore, drought reporting is dependent on local/national events with more pressing 

news content impacting the number of and space provided for drought articles. The count of 

drought impact articles is therefore an imperfect proxy for the significance of reported 

impacts. As the models applied weights based on reciprocal ranking of total monthly articles 

numbers, the aforementioned sources of bias would all impact model performance.  Whilst 

aggregation of data by catchment clusters helps limit the impacts of some of these biases, a 

much more substantive assessment of the text of the articles together with a sectoral based 

approach of model generation would help reduce this source of uncertainty further.  

Possibilities for future work include the application of other drought metrics such as SPEI 

and/or low flow indicators. Alternative modelling approaches may also be considered. For 

instance, Bachmair et al. (2017) demonstrate the utility of machine learning for linking 

drought impacts and metrics which could potentially better handle the complex, multi-

threshold relationships found here, including accounting for non-binary impact series. Other 

impact datasets could be explored to supplement use of newspaper articles including 

historical inventories, such as harvest volumes, and/or records of impacts on online social 

media platforms such as Twitter, as has been demonstrated for flood impacts (Basnyat et al., 

2017; Thompson et al., 2021). Our analysis has shown that drought indices and article 

numbers do not always coincide (e.g. the 1945 and 1921 drought events). Examining the 

relationships between the frequencies of drought impact reporting and evolving drought 

indices for such events would be beneficial. Finally, drought monitoring is an essential 

component of drought risk management (Senay et al., 2015), with the success of drought 

mitigation measures largely dependent upon the gathering of information on drought onset, 

progress and areal extent (Morid et al., 2006). The identification of regional vulnerability to 

drought impacts here is an additional element to drought monitoring that could potentially 

produce societal benefits. The development of such a system for Ireland, using these research 

findings, should be explored further. 

This paper applied logistic regression and GAMs to link reconstructed SPI and SSI metrics to 

reported land- and hydrological-based drought impacts as inferred from newspaper reports 

covering the period 1900-2016 in 51 catchments in Ireland. We find that, based on model 

performance metrics and impact likelihood scores, SPI-3 and SSI-2 are most closely related 

to reported land- and hydrological-based impacts, respectively. Catchments in the 

east/southeast show the highest probabilities of land- and hydrological-based impact reports 

on an annual timescale, displaying notably higher impact reporting probabilities during 

winter months which can possibly be attributed to the high ground water content in these 

catchments. During summer months catchments in the northwest display the highest 

hydrological-based impact reporting probabilities at low SSI-2 deficits, despite having the 

lowest equivalent land-based impact reporting likelihoods. Our findings show that maximum 

drought impact likelihoods across the 1900-2016 period occur in July for SPI-3 and SSI-2 

with even modest deficits resulting in a high likelihood of impact reports. Overall, the lowest 

impact likelihoods occur in January for SPI-3 and SSI-2 were indices values of <-3 for the 

former only generate very low to low likelihoods of impact reports, whilst for the latter they 



generate differences from low impacts (Cluster 1) to high impacts (Cluster 3). These findings 

suggest that the use of fixed thresholds for identifying drought impacts is not suitable. 

Changes in impact likelihoods over the last 116 years reveal a falling likelihood of drought 

impact reports for catchments in the east/southeast and southwest. Northwestern catchments 

show heightened likelihood of reported impacts for more extreme drought deficits in recent 

decades, particularly in respect of agricultural and livestock farming. The results reported 

here have the potential to inform the development of a drought monitoring and warning 

system both regionally and at the catchment scale in Ireland. 
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Supplementary Information 

  Table S1. Breakdown of article numbers based on county, cluster and related article type/grouping. 

        Hydrological-Based Impact Articles                     Land-Based Impact Articles    

County 

Name 

Cluster 

No. 

Aquaculture 

and 

Fisheries 

Waterborne 

Transport 

Energy 

and 

Industry 

Tourism 

and 

Recreation 

Public 

Water 

Supply 

Water 

Quality 

Freshwater 

Ecosystem 

Sub- 

Total 

Agriculture 

& Livestock 

farming 

Terrestrial 

Ecosystems 

Soil 

Systems 

Wildfires Air 

Quality 

Forestry Sub- 

Total 

Total 

Carlow 3 4 2 3 1 26 1 12 49 55 2 11 0 0 0 68 117 

Cavan 3 8 1 3 2 36 2 22 74 85 4 1 5 0 0 95 169 

Clare 2 1 1 4 3 20 1 7 37 22 0 2 3 0 0 27 64 

Cork 2 20 0 6 17 121 8 49 221 221 9 12 4 2 0 248 469 

Donegal 1 30 0 5 3 79 4 42 163 79 1 2 9 0 0 91 254 

Fermanagh 1 5 1 0 1 14 0 9 30 20 2 1 5 0 0 28 58 

Galway 1 15 1 0 6 83 6 38 149 116 3 4 7 0 1 131 280 

Kerry  2 22 2 0 5 53 3 26 111 112 6 1 0 0 0 119 230 

Kildare 3 6 1 0 6 14 0 7 34 39 2 4 3 0 0 48 82 

Kilkenny  3 2 0 2 2 32 0 10 48 81 0 4 2 0 0 87 135 

Laois 3 1 0 2 2 30 2 12 49 63 3 0 7 0 0 73 122 

Leitrim 1 6 2 1 0 21 1 13 44 45 2 2 1 0 0 50 94 

Limerick 2 7 0 2 5 72 3 20 109 121 13 3 6 0 1 144 253 

Longford 3 1 2 3 3 24 0 8 41 46 2 1 0 0 0 49 90 

Louth  3 8 0 1 4 40 0 7 60 46 1 2 4 0 0 53 113 

Mayo 1 11 1 2 3 48 6 30 101 46 5 6 0 1 3 61 162 

Meath 3 10 0 0 8 38 0 14 70 57 3 3 2 0 0 65 135 

Monaghan 3 5 1 4 0 53 2 12 77 60 4 1 4 0 0 69 146 

Offaly 3 1 1 1 0 16 0 9 28 40 2 2 1 0 2 47 75 

Roscommon 1 1 2 2 3 27 0 18 53 42 2 0 3 1 0 48 101 

Sligo 1 5 0 1 3 32 1 8 50 20 1 0 0 0 0 21 71 

Tipperary 3 9 0 3 7 75 0 16 110 158 6 4 7 0 0 175 285 

Tyrone 1 22 0 0 1 67 5 26 121 51 4 1 4 0 0 60 181 

Waterford 3 8 0 0 6 48 0 15 77 81 6 3 4 0 2 96 173 

Westmeath 3 5 5 1 5 29 4 23 72 57 5 1 2 0 0 65 137 

Wexford 3 0 1 6 1 29 1 9 47 81 4 9 1 0 0 95 142 

Wicklow 3 1 0 0 0 20 0 4 25 23 0 3 3 0 0 29 54 

Total - 214 24 52 97 1147 50 466 2050 1867 92 83 87 4 9 2142 4192 
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Figure S1. Time-series of SPI 3, 6 and 12, derived from median flows for each cluster 

(1900-2016), using the Tweedie distribution and 1930-1999 reference period. Horizontal 

lines represent moderate, severe and extreme drought thresholds in all plots. 

 

 

Figure S2. As Figure S1 but for SSI 3, 6 and 12. 

 


