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0  Background and adjusted scope of this deliverable

The title of this deliverable could be abbreviated to “Drought scenarios at 
broader scale”, and the original idea was probably to provide a modelling-
supported upscaling of drought impact scenarios from the regional  case 
studies to the European continent. We have to admit that this aim was set 
too high. The eco-hydrological model SWIM developed at PIK (Krysanova et 
al. 1998) which has a long history of successful applications in large river 
basins around the world (Krysanova et al. 2015) was planned to be applied 
to  all  of  Europe,  but  the  complexity  of  this  task  was  under-estimated. 
Additional retarding factors were a general overhaul of the original Fortran 
code which had seen many amendments by different programmers with 
different  coding  styles.  The  re-write  altered  many  data  formats  and 
interfaces and additionally introduced the Python programming language 
for  pre-  and  postprocessing.  Albeit  reproducible  modelling  was  not 
guaranteed any more with the old code and the overhaul was therefore 
inevitable, it  required new ways of  operation which could not be easily 
acquired by the team. The chief developer responsible for this transition 
left  PIK  in  2021  when  there  were  still  many  open  issues,  and  the 
hydrologist  tasked  with  setting  up  SWIM  Europe  also  went  to  another 
employer  one  year  later.  At  the  time of  writing,  the  continental  SWIM 
setup is still a construction site.

What we learned from the case studies was how differently the individual  
drought  situations  developed,  beginning  from  different  meteorological 
backgrounds (since drought is always relative to the local climate normals) 
to region-specific impact chains or non-impacts (e.g. a rural area depending 
on irrigation vs a lignite mining region with no lack of draining water for  
cooling  their  power  stations).  We  therefore  first  took  a  step  back  and 
looked  at  the  already  existing  drought  scenarios  for  or  including  the 
European continent which are however often limited to the meteorological 
drivers.  The  main  part  of  this  deliverable  is  therefore  devoted  to 
researching  the  link  between  meteorological  and  soil  drought  across 
Europe – even without eco-hydrological modelling – as soil drought is the 
leading  component  in  the  drought  cascade  directly  affecting  vegetation 
growth  including  crop  yields  and,  with  a  time  lag  of  2–3  years,  forest 
health. Being able to calculate realistic root zone soil moisture distributions 
from meteorological variables on the large scale would be an important 
step  in  establishing  reliable  continental  impact  scenarios.  As  we  will 
demonstrate,  there  are  still  significant  deficits  in  root  soil  moisture 
modelling on these scales which may also question the validity of earth 
system or global circulation models including a land component.
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1  The current state of drought scenarios for Europe

Drought  risk  is  increasing  in  many  parts  of  the  world  due  to  ongoing 
climate  change  (Caretta  et  al.  2022).  For  a  detailed  view  into  future 
trajectories  in  hydrological  storages  and vegetation,  i.e.  diminishing  soil 
water  contents  in  a  certain  agricultural  region,  projections  of  spatially 
distributed (eco-)hydrological  models are needed, but these are still  not 
widely available or reliable on the large scale.

Zhao and Dai  (2022) presented an assessment of  drought  trends in the 
CMIP6 model ensemble considering 25 global circulation models (GCMs). 
The global  change patterns for precipitation (P),  evapotranspiration (ET), 
soil  moisture (SM), and runoff (R) are quite similar to those observed in 
CMIP5-based studies; both P and ET are increasing in large parts of the 
world.  In  Europe,  there  are  negative  trends  especially  for  P  in  the 
Mediterranean region, and the decreasing water balances show negative 
trends in SM, pronounced in the top layer over all of Europe, but also in the 
root zone with Scandinavia and the Baltic coast being the only exceptions. 
This is mirrored in R which is projected to decrease by 20% and more in 
southern Europe at the end of the 21st century under SSP5-8.5 conditions. 
Joo et al. (2020) warned also of earlier and stronger soil moisture depletion 
using statistically downscaled CMIP5 data.

The self-calibrating Palmer drought severity index (Palmer 1965, Wells et 
al.  2004,  Dai  2011)  was  also  calculated  and  analyzed  for  the  CMIP6 
scenarios by Zhao and Dai (2022). Already under SSP2-4.5 conditions this 
index is expected to decrease on average by 0.5–1.5 units in Central and 
Southern Europe towards the end of the 21st century, and under SSP5-8.5 
the decreases exceed 2 units. In both scenarios, decreases are also possible 
in parts of Scandinavia,  especially  Finland. Given the fact that the index 
should fluctuate  around zero under  normal  conditions and that  a  value 
below  −3 is considered a severe drought,  a general  decrease by 2 units 
means severe droughts becoming a rather common phenomenon in most 
of  Europe.  Higher  probabilities  for  hydroclimatic  extremes  can  also  be 
assumed  from  the  observation  of  flattening  probability  distribution 
functions, i.e. an increasing variability. For agroclimatic droughts Zhao and 
Dai (2022) report increasing frequencies for most parts of the world with 
pronounced effects over Europe. Finally it must be noted that compared to 
the respective analysis of CMIP5 models under a RCP 4.5 scenario (Zhao 
and  Dai  2015)  the  CMIP6  drought  trend  seems  less  concentrated  over 
Southern Europe.

An earlier analysis of CMIP6 outputs regarding drought effects had been 
presented by Cook et al. (2020), however based on 13 GCMs only. Their soil 
moisture  maps  show  the  strongest  decreasing  trends  not  only  over 
Southern Europe but also in Northern Scandinavia,  especially during the 
northern hemisphere summer. The same spatial pattern is shown for the 
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occurrence probability  increase  for  extreme droughts,  but  top-layer  soil 
moisture is projected to decrase also over Central Europe.

These  and  other  recent  drought  scenario  assessments  were  critically 
highlighted in a CROSSDRO publication by Vicente-Serrano et al.  (2022). 
Starting  from global  drought  trend assessments  of  the  recent  past  and 
being confronted with large discrepancies between trend maps of different 
drought  indicators  –  depending  on  precipitation,  evapotranspiration,  or 
atmospheric evaporative demand (AED) being the principal variable – the 
authors  conclude  that  these  inconsistencies  multiply  with  the  notable 
uncertainties  of  global  circulation  models  (GCM)  so  that  the  GCM-only 
based trend maps are generally questionable. Nevertheless, a clear signal 
towards increasing drought stress on vegetation caused by upward trends 
in AED could be identified for most world regions including Europe.

As  already  stated in  the first  paragraph  of  this  section,  the lack  of  soil  
moisture  or  runoff  scenarios  produced  from  global  or  continental 
hydrological models is striking. The hydrological scenarios cited by Vicente-
Serrano  et  al.  (2022)  are  extrapolations  of  statistical  relationships  to 
meteorological conditions (e.g. Dai 2021, Woodhouse et al. 2016, or Zeng 
et al. 2022). As we failed with our own attempt filling this gap (see previous 
section)  we  will  now  look  at  the  connection  between  meteorological 
drought and some prominent root zone soil moisture reanalyses.
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2  Connecting meteorological and soil drought

2.1 Introduction

Meteorological and soil drought indices correlate quite well if the time lag 
of soil drought is somehow considered (cf. Ajaz et al. 2019). Barnard et al. 
(2021) assessed the connections between the Standardized Precipitation 
Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010, Beguería et al. 
2014) on different scales and dynamically modelled soil water profiles at 
866 sites in the Midwestern U.S. In general, the strongest correlations for 
depths below 20 cm were found for a SPEI integrating twelve months, but 
process-based modelling was recommended especially  for  end-of-winter 
situations and sowing date determination.

A  more  broadscale  and  indirect  attempt  to  connect  weather  to  soil 
moisture patterns across Europe – by the North Atlantic Oscillation (NAO), 
Arctic Oscillation (AO) and El  Niño Southern Oscillation (ENSO) indices – 
was made by Almendra-Martín et al. (2022). The authors also used ERA5 
and LISFLOOD soil moisture (SM) data as reference excluding large parts of 
Scandinavia,  the  Alps  and  other,  mostly  mountainous  patches  in  which 
their SM series are not clearly correlated or even contradictory (r < 0.5). As 
we will see below, even the direct correlations between SPEI and these SM 
data  are  low in  mountainous  areas.  Sutanto  et  al.  (2020)  who mapped 
compound drought hazards using LISFLOOD for soil drought and ERA5 for 
fire risk (meteorological drought) consequently found low compound risk 
for  just  the  same  regions.  Connections  between  ENSO  and  global  soil 
moisture were also researched within CMIP6 scenarios (Le and Bae 2022),  
but they were found to be weak and not present in Europe.

In situ soil moisture (SM) measurements which provide direct information 
about the root zone soil water content are relatively scarce especially in 
Central and Northern Europe (Dorigo et al. 2021) albeit there are recent 
initiatives to densify the network, e.g. by cosmic-ray sensors (Bogena et al. 
2022). For obtaining soil moisture fields simple spatial interpolation of the 
point measurements would therefore not work, a lot of landscape hetero-
geneity between the stations including different orographic conditions, soil 
textures,  and  local  precipitation  events  requires  consideration  of  these 
factors,  for example by eco-hydrological  modelling.  A review by Liu and 
Yang (2022) illustrates the state of the art in tackling the problem among 
which process-based modelling, assimilation of satellite and meteorological 
data, data fusion and deep learning are common approaches.

Here we will investigate the feasability for approximating the root zone soil 
moisture distribution over Europe more or less directly from a spectrum of 
SPEIs on different scales. The idea is to map the correlations between each 
SPEI and soil  moisture indices (SMI)  from major global  or European soil 
moisture  products  and see  whether  high  correlations  can  be  found  for 
every  location  from  any  of  the  SPEI  scales.  Consequently  using  indices 
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tackles  the complications from annual  soil  moisture  cycles  and regional 
differences in soil  water storage availability and average saturation.  If  a 
common  geographical  pattern  of  SPEI  scales  for  relatively  high  optimal 
correlations can be found it would provide an easy approach for deriving 
large  scale  soil  drought  maps  from  weather  or  climate  scenario  data 
without the need for using dynamical  models.  In any case, this exercise 
opens an unconventional view on the connection between meteorological 
drought and soil moisture dynamics.

While  SPEI  histories  can be calculated  from any  high-resolution climate 
reanalysis or gridded weather data – we chose E-OBS, probably the best 
observation-based grid product for Europe – the collection of soil moisture 
data from different sources requires some effort regarding homogenizing 
different  grids  and  time  scales.  What  options  exist  for  soil  moisture 
products?

Within  Germany,  the  mesoscale  hydrological  model  (mHM)  of  the 
Helmholtz Centre for Environmental Research (UFZ), Leipzig, provides soil 
moisture  for  their  Drought  Monitor  (UFZ  2023).  A  recent  evaluation 
confirmed  the  high  correlation  with  observed  soil  moisture  especially 
during drought phases (Boeing et al. 2022). The performance of the new 
1.2 km resolution version was however only slightly enhanced compared to 
version 1, and we can therefore rely on the publicly available data with 
4 km resolution as best reference for the region.

Beck  et  al.  (2021)  recently  evaluated  18  global  soil  moisture  products. 
Despite the limitation of the comparisons to 5 cm soil depth also for root-
zone  products  to  include  satellite  products  this  might  be  the  most 
comprehensive  quality  ranking  available  at  the  time  of  writing. 
Interestingly,  only two remote sensing products are  among the top ten 
regarding  the  highest  median  correlations  (r̃)  with  the  in  situ 
measurements, and all models with data assimilation can be found in the 
front half of the field. The top four positions with median correlations of 
0.74–0.78 to in-situ measurements are variants of the Hydrologiska Byråns 
Vattenbilansavdelning  (HBV)  hydrological  model  (Bergström  1976,  1992, 
Seibert and Bergström 2022) contributed by the authors; these data are 
however  only  available  upon  request.  Among  the  generally  available 
products  including  root  zone  soil  moisture,  ERA5-Land  is  the  next-best 
(r̃ = 0.72) followed by GLEAM (r̃ = 0.71) and ERA5 with data assimilation 
(r̃ = 0.68);  GLDAS-Noah  performs  worst  (r̃ = 0.60)  –  this  is  in  agreement 
with Li et al. (2021) who also observed strong biases in Noah-MP results. 
Anyway, these are the “big names” for large-scale soil moisture data. ERA-
Interim,  ERA5,  and  GLDAS  served  as  basis  for  the  evaluation  of  SM  in 
CMIP6 Simulation by Qiao et al. (2022).

Accordingly,  we  considered  ERA5,  the  fifth  generation  of  European 
ReAnalysis, more precisely its ERA5-Land component (Muñoz-Sabater et al. 
2021). Soil moisture is included and computed hourly by the ECMWF land 
model  CHTESSEL which considers six different soil  texture classes in the 
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ECMWF  triangular–cubic–octahedral  (TCo1279)  operational  grid  at  9 km 
resolution, however distributed as monthly averages in a regular latitute–
longitude grid (see below). Muñoz-Sabater et al. (2021) present a broad 
evaluation  of  ERA5-Land  showing  a  median  Pearson  correlation  of 
approximately  0.63  between soil  moistures  calculated  and measured in 
Europe for 20 cm and 50 cm depth.

This  is  complemented by  GLDAS,  NASA’s  Global  Land  Data  Assimilation 
System (Rodell et al. 2004), namely its Noah Land Surface Model L4 V2.1 
(Beaudoing  and  Rodell  2020),  the  worst  of  the  root-zone  soil  moisture 
products evaluated by Beck et al. (2021). Both CHTESSEL and Noah work 
with texture groups and use similar soil layer structures (regarding Noah cf. 
UCAR 2023); the quality gap to ERA5 may result from the driving reanalysis 
data, a coarser grid resolution or longer time steps.

In addition to mHM, ERA5, and GLDAS, we investigate the soil  moisture 
data in the hydrological model LISFLOOD, used in V4 of the European Flood 
Awareness  System  EFAS  (Mazzetti  et  al.  2020),  and  SoMo.ml-EU,  an 
entirely  observation-based soil  moisture  data  set  generated by machine 
learning (O et al. 2022).

Many other globally integrated SM data exist, e.g. from the U.S. Air Force 
Agriculture Meteorology Modeling System (Eylander et al. 2022), or from 
the  Chinese  Academy  of  Science's  Atmosphere–Vegetation  Interaction 
Model (AVIM; Ji 1995, Lv et al. 2021) but they are not publicly available for 
scientific exploitation. There are also cases in which input data and model 
code are  provided,  but  not  the soil  moisture  output.  Besides  individual 
studies (e.g. Kim et al. 2021) this affects JULES, the land model of the UK 
Met  Office (Wiltshire  et  al.  2020,  Gómez et  al.  2020).  Deliberately  not 
considered  were  also  data  labeled  “available  on  request”  albeit  this 
excluded  the  data  of  WAYS,  a  global  hydrological  model  specifically 
developed for root zone water storage simulation (Mao and Liu 2019), the 
different HBV outputs used by Beck et al. (2021), or mHM simulations over 
Europe (Moravec et al. 2019, 2021).

2.2 Data and Methods

2.2.1 Weather data and SPEI calculation

The observed weather data basis used in this study were the 0.1-degree 
grids  of  E-OBS  v27.0e  containing  daily  data  of  several  meteorological 
variables over Europe for the years 1950–2022 (Cornes et al.  2018, C3S 
2023).  We  aggregated  monthly  values  for  maximum  and  minimum  air 
temperature and precipitation for the years 1968–2022. Only grid cells that 
had complete coverage of all three variables on all days within this period 
were considered in this aggregation, this excludes parts of Italia, most of 
Greece, and large parts of Eastern Europe. An imputation method for hole-
filling  of  E-OBS  data  had  recently  been  developed  at  PIK,  but  the 
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application to the v27.0e data released in April 2023 was still in the making 
when this assessment was being compiled.

The  Standardized  Precipitation-Evapotranspiration  Index  (SPEI,  Vicente-
Serrano et al. 2010, Beguería et al. 2014) had been calculated from these 
monthly E-OBS fields using Hargreaves evapotranspiration with the SPEI 
software package v1.7 (Beguería and Vicente-Serrano 2017)  for  R  (used 
with  R  version  3.6.3).  We  learned  about  the  2023  package  updates  to 
v1.8.1 too late; according to the update announcement the error in the 
Hargreaves  calculation  reported  for  v1.7  should  however  not  exceed 
0.1 percent. The SPEI was calculated using the standard rectangular kernel 
for time scales of 1, 2, 3, 4, 6, 9, 12, 18, 24, and 36 months. The original  
index  time series  of  each  raster  cell  have  been rescaled  from standard 
normal to uniform distribution on the [0,1]-interval; the original idea was 
to match the mHM SMI distribution (see below), and we decided to stick to 
uniform distributions to de-emphasize the influence of extreme values in 
the correlations assessment.

2.2.2 Soil moisture data and SMI calculation

We start  our  analyses  with the soil  moisture index of  the UFZ Drought 
Monitor (UFZ 2023) calculated by the mesoscale hydrological model (mHM; 
Samaniego et al. 2010, Kumar et al. 2013) which is limited to Germany but 
considers the effects of the country’s diverse soil landscapes through about 
70 different soil profiles and their hydrological properties over 1.8 m depth. 
The mHM soil moisture index (mHM SMI) could be obtained for the years 
1951–2022 in monthly time steps, however daily from 30 January 2019 on. 
It uses a 4-km raster based on an outdated German national map datum 
(DHDN zone 4, EPSG:31468). We discarded the months before 1971-01 and 
aggregated the daily data to monthly values from 2019-02 to 2022-12 to 
obtain a consistent time series of 52 years matching the availability of SPEI 
maps for all scales.

Soil moisture from ERA5-Land could readily be obtained in form of monthly 
averages for the entire 1971–2022 time range and on a regular 0.1-degree 
grid (Muñoz-Sabater et al. 2019). There are however separate volumetric 
soil moistures given in percent for three layers (0–7 cm, 7–28 cm, and 28–
100 cm depth);  we  multiplied  these  by  the  respective  layer  thicknesses 
before summing them up to absolute water contents in mm. Spuriously 
occurring negative values were set to zero. For each raster cell, the time 
series of water contents was transformed to soil moisture indices more or 
less  equally  distributed  on  the  [0,1]-interval  using  the  standard  density 
estimation of the R software.

The LISFLOOD soil moisture data  (Mazzetti et al. 2020)  are samples from 
the 15th of each month (the model operates on 6-hour time steps, and 
aggregations were not available). They are provided in a 5-km raster based 
on ETRS89 / LAEA Europe (EPSG:3035) complying with the standard grids 
used by European statistical offices. The calculation to obtain the LISFLOOD 
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SMI  was  practically  the  same  as  with  ERA5,  only  the  three  layers  had 
depths of 0–10 cm, 10–30 cm, and 30–50 cm, and the temporal coverage 
was limited to the years 1991–2022.

GLDAS-Noah  is  the  only  of  the  GLDAS  Land  models  whose  data  are 
provided in 0.25 degrees resolution (Beaudoing and Rodell 2020), the other 
alternatives are even coarser with 1-degree grids. Noah soil moisture data 
are provided as absolute values for four layers, 0–10 cm, 10–40 cm, 40–
100 cm, and 100–200 cm; these were simply added before our GLDAS SMI 
calculation took place. With the years 2000–2022 the time coverage was 
even shorter than for LISFLOOD. Previous years would have been available 
from  a  former  model  version  only,  and  such  inconsistency  should  be 
avoided.

The SoMo.ml-EU data (O et al. 2022) have the same layer configuration as 
LISFLOOD, 0–10 cm, 10–30 cm, and 30–50 cm, and their volumetric water 
contents  are  treated  alike  to  obtain  the  SoMo  SMI.  The  data  are  also 
provided on a regular 0.1-degree grid; the time range is however limited to 
2003–2020, and it is unlikely that this demonstrator data set will ever be 
extended. 

2.2.3 Correlation mapping

To  map  the  Pearson  correlations  between  the  local  time  series  of 
differently scaled SPEIs and the various SMIs a common raster geometry 
had to be chosen and necessary reprojections to be performed. For the 
German mHM data its original  4-km DHDN raster  was used; SPEIs  were 
regridded with bilinear interpolation. ERA5-Land and SoMo.ml-EU datasets 
could be practically directly applied due to their consistent 0.1-degree grid 
(considering only certain differences in the extent of the map rectangles). 
The GLDAS-Noah data in 0.25-degree resolution and the SPEI data in 0.10-
degree  resolution were  both  resampled  to  a  common  0.05-degree  grid 
using the nearest-neighbour principle (effectively leading to an overlap of 
internally homogeneous grid boxes of different sizes). For LISFLOOD, the 
SPEI data were bilinearly interpolated to its 5-km grid.

This ETRS89 / LAEA grid was also applied for the visualizations; it provides 
an  equal-area  projection  with  minimum  distortion  in  Central  Europe 
(projection centre at 52°N, 10°E). Consequently, the other correlation maps 
were  also  resampled  to  this  grid  using  the  nearest-neighbour  method. 
Finally, two extra maps were produced for each SMI: one showing the local 
maxima  of  the  correlation  maps  for  the  different  SPEI  scales  and  one 
showing the respective optimal scales.
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2.3 Results

2.3.1 UFZ Drought Monitor / mHM

First we will look at the correlations between the UFZ Drought Monitor's 
Soil  Moisture  Index  (SMI)  and  the  1-month  SPEI.  With  the  time  scale 
equalling  the  temporal  resolution  of  the  input  weather  data  the  SPEI 
indicates the relative positions of the actual climatic water balances within 
their monthly distributions expressed in  Z metrics, there is no extra time 
lag  except  the  monthly  aggregation.  Given  the  hysteresis  of  the  water 
content in most soils, higher correlations can only be expected in places 
with shallow or stony soils with low storage capacities and high percolation 
rates.

Figure 1 shows that this assumption is probably correct: Among the spatial 
patterns displayed there there is a boomerang-shaped structure of higher 
correlations in Southern Germany. An overview map of German major soil 
landscapes (BGR 2008) displayed in Figure 2 shows this  “boomerang” in 
deep-pink indicating shallow soils on limestones, and the biggest respective 
blob matches the higher-correlation structure in Fig. 1.

Figure 1: Map of Pearson correlations between monthly values of the Soil 
Moisture Index of the UFZ Drought Monitor and SPEI-1 calculated from E-
OBS data.

14
CROSSDRO Deliverable 5.2 crossdro.csic.es

https://crossdro.csic.es/


12/05/23

Figure 2:   Map   of   the   major   German   soil   landscapes   (Bodengroß-
landschaften,   BGR   2008).   Screenshot   from   the   BGR   Geoviewer 
(https://services.bgr.de/boden/bgl5000,   2023-05-04)   reproduced   at 
approximate 1 : 8 000 000 scale in accordance with the German legislation 
on geodata use (GeoNutzV).

This structure resembles the German Jura highlands (German: Alb), namely 
the Swabian Jura in the west and the Franconian Jura in the east including 
the northward-bending wing of  the “boomerang”.  As the English names 
suggest, they consist in large parts of Jurassic limestone with the respective 
soil-hydraulic properties. Karst  is  also a frequent feature in the Swabian 
Jura. The quick drying (and rewetting) of the Swabian Jura is also visualized 
in a regional soil drought assessment (Tijdeman and Menzel 2021).

Figure 3 displays the results for the longer SPEI timescales up to 36 months. 
As one could expect, the Jura structure appears darker than its surround-
ings on the longer scales, especially 9–18 months. Subfigure 4d) showing 
the correlations for SPEI-6 is generally the brightest map with the highest 
average  r:  0.575.  This  recommends  SPEI-6  as  easy-to-calculate  general 
drought indicator for Germany if no additional soil information should be 
considered.  However,  for  the  many  distinct  landscapes  in  the  country 
individual scales are preferrable. For example, there is a high-correlation 
triangle appearing to the west of the map centre on the 3- and 4-months 
time scales. This is the Sauerland, part of the Rhenish Massif characterized 
by relatively high precipitation (> 1000 mm per year, the German average is 
about 790 mm per year) and soils formed on slate rocks. High correlations 
on long time scales (18–36 months) are restricted to lowland areas with 
deep sediments and soils, e.g. the Rhine Valley or loess areas. These have 
respectively long soil water turnover times.
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Figure 3: Pearson correlations between monthly values of the Soil Moisture 
Index of the UFZ Drought Monitor (mHM SMI) and SPEI on different time 
scales:   a)   2   months,   b)   3   months,   c)   4   months,   d)   6   months,
e) 9 months, f) 12 months, g) 18 months, h) 24 months, and i) 36 months. 
Colour scale as in Fig. 1.

To obtain  a  better  SPEI  proxy  for  the  SMI  situation in  all  landscapes  it  
seems reasonable to compose a map from SPEI values of different scales: 
Then each raster cell takes the SPEI of the scale that yielded the highest 
correlations to the SMI. The spatial distribution of optimized correlations 
achieved  by  this  approach  is  shown  in  Figure 4,  and  Figure 5  indicates 
where which scale had been applied.

Correlation values of 0.6 and above are reached in 60% of the country, the 
average is 0.606 and the median 0.623. In some parts of Eastern Germany 
the soil moisture situation can however not be satisfactorily approximated 
by any of the SPEIs. Despite the probably nonlinear hysteresis of the soil  
water  storage  to  the  meteorological  situation  in  these  areas,  the  time 
scales of their best linear approximations form smooth spatial gradients to 
the neighbouring areas in the map in Fig. 5. 

16
CROSSDRO Deliverable 5.2 crossdro.csic.es

https://crossdro.csic.es/


12/05/23

Figure 4: Maxima of the correlations between mHM SMI and SPEIs of ten 
different time scales ranging from 1 to 36 months.

Figure 5: Spatial distribution of the SPEI time scales used for the optimal 
local correlations with mHM SMI depicted in Fig. 4.
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We can also spot some yellow pixels in Fig. 5 indicating the 1-month SPEI 
timescale at the southern border. This edge cuts the northern fringes of the 
Alp mountains  where immediate  reactions  can be expected  due  to  the 
rocky substrates but hardly be detected from the correlation maps alone. 
In general, the structures in Fig. 5 appear to correspond better than any of 
the correlation patterns to the major  soil  landscapes of  Fig. 2  –  a  clear 
indication that the mesoscale hydrological model (mHM) behind the UFZ 
Drought  Monitor  (UFZ  2023)  appropriately  considers  the  regionally 
differing hydraulic landscape properties in its soil water calculations.

2.3.2 ERA5-Land

The  ERA5  model  does  not  show  the  same  detailed  structures  within 
Germany,  but longer SPEI  scales,  albeit  on a lower level,  are also more 
appropriate in Eastern Germany as soil moisture status proxy (Figs 6 and 8).

Figure 6: Pearson correlations between monthly values of the ERA5 SMI and 
SPEI   on   different   time   scales:   a)   1  month,   b)   2  months,   c)   3  months,
d) 4 months, e) 6 months, f) 9 months, g) 12 months, h) 18 months, and
i) 24 months. Colour scale as in Fig. 7.
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Figure 7: Maxima of the correlations between ERA5 SMI and SPEIs of ten 
different time scales ranging from 1 to 36 months.

Figure 8: Spatial distribution of the SPEI time scales used for the optimal 
local correlations with ERA5 SMI depicted in Fig. 4.
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The  ERA5  map  of  maximum correlations  (Fig. 7)  has  got  an  average  of 
0.490 and a median of 0.539. Especially in mountainous areas there is no 
simple relationship between SPEI and SMI, the prevalence of shorter scales 
in these regions (Fig. 8) seems however realistic.

2.3.3 LISFLOOD

The LISFLOOD correlation maps provide a scattered impression. Especially 
in mountainous regions there are small areas with the shortest and longest 
optimum time scales clashing together. Keeping in mind that LISFLOOD was 
set up for flood forecasting, matching observed runoff curves will probably 
have been the priority in model calibration, not soil moisture patterns. The 
patchwork of optimum time scales might then well resemble the structure 
of gauge catchments which received individual (and partly extreme) cali-
bration  parameters  biasing  the  soil  water  budget.  The  average  of  the 
optimum correlations (Fig. 10) is only 0.386, and their median is 0.410.

Figure 9: Pearson correlations between monthly values of the LISFLOOD SMI 
and SPEI on different time scales: a) 1 month, b) 2 months, c) 3 months,
d) 4 months, e) 6 months, f) 9 months, g) 12 months, h) 18 months, and
i) 24 months. Colour scale as in Fig. 10.
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Figure 10: Maxima of the correlations between LISFLOOD SMI and SPEIs of 
ten different time scales ranging from 1 to 36 months.

Figure 11: Spatial distribution of the SPEI time scales used for the optimal 
local correlations with LISFLOOD SMI depicted in Fig. 10.
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2.3.4 GLDAS-Noah

The GLDAS-Noah model shows certain similarities to the ERA5-Land results 
with the mountain ranges exposing generally low correlations. In contrast 
to  ERA5 there  are  also  a  lot  of  areas  with  very  long  optimal  scales  in 
mountainous areas, and the broader patterns in the lowlands do not match 
very well (Fig. 14). Part of the generally noisier appearance of the GLDAS 
results  is  however  owing  to  the  coarser  input  grids  and  the  nearest 
neighbour  resampling applied.  As already mentioned,  Beck et al.  (2021) 
found ERA5 superior  to GLDAS regarding  the accuracy  of  soil  moisture. 
Nevertheless,  there  are  larger  lowland  areas  reaching  very  high 
correlations with GLDAS SMI, especially in the Danube basin, and this leads 
to a maximum correlation (Fig. 13) average of 0.544 and a median of 0.562, 
a brighter image than the respective ERA5 map in Fig. 7.

Figure 12: Pearson correlations between monthly values of the GLDAS SMI 
and SPEI on different time scales: a) 1 month, b) 2 months, c) 3 months,
d) 4 months, e) 6 months, f) 9 months, g) 12 months, h) 18 months, and
i) 24 months. Colour scale as in Fig. 13.
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Figure 13: Maxima of the correlations between GLDAS SMI and SPEIs of ten 
different time scales ranging from 1 to 36 months.

Figure 14: Spatial distribution of the SPEI time scales used for the optimal 
local correlations with GLDAS SMI depicted in Fig. 13.
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2.3.5 SoMo.ml-EU

The field observation-based SoMo.ml-EU results expose aspects of both the 
ERA5 maps,  especially  the homogeneously short optimum SPEI  scales in 
mountainous  areas  (Figs 8  and 17),  and  the  GLDAS  maps,  note  here  a 
common preference for longer optimum time scales in the lowland regions 
around the Baltic Sea (Figs 14 and 18) and the clustering of the highest 
within-map correlations in the Danube basin (Figs 13 and 16). Interestingly 
there  are  only  small  areas  in  the  mountainous  regions  with  very  low 
correlations  for  all  SPEI  scales,  this  relativizes  the  absence  of  high 
maximum  correlations;  the  average  of  Fig. 16  is  still  at  0.539,  and  the 
median  at  0.555.  The German soil  landscape  structures  (Fig. 2)  can  not 
easily be spotted in the SoMo.ml-EU results, but compared to the European 
model  outputs  there  are  at  least  some relations,  note  for  instance  the 
yellow  for  the  1-month  optimum  time  scale  on  a  couple  of  mountain 
ranges in Fig. 17.

Figure 15:  Pearson correlations  between monthly  values  of   the SoMo.ml 

SMI and SPEI on different time scales: a) 1 month, b) 2 months, c) 3 months,
d) 4 months, e) 6 months, f) 9 months, g) 12 months, h) 18 months, and
i) 24 months. Colour scale as in Fig. 16.
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Figure 16: Maxima of the correlations between SoMo.ml-EU SMI and SPEIs 
of ten different time scales ranging from 1 to 36 months.

Figure 17: Spatial distribution of the SPEI time scales used for the optimal 
local correlations with SoMo.ml-EU SMI depicted in Fig. 16.
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2.4 Discussion and Conclusion

A fundamental  problem that became obvious from the wide differences 
between the results  for  the different  SM products  is  their  questionable 
quality on global or continental scales. Local evaluations using observed SM 
(e.g.  Huang  et  al.  2022)  cannot  inform  about  the  model  fidelity  on 
continental  scale  but  show  high  discrepancies  even  between  different 
versions of a model (Yang et al. 2022). The most probable reason for these 
problems are the generally very coarse and simple (mis-)representations of 
the soil landscapes.

Another example for largely disregarding local soil conditions in modelling 
soil moisture in the climate modelling community is given by Raoult et al. 
(2021). They fit a parameter in ORCHIDEE LSM, the land component of the 
French Earth System Model,  to match drydown trajectories after rainfall 
events observed at 18 sites distributed around the world, notably with very 
different vegetation types and aridity conditions.  From their results,  the 
parameter does not appear correlated to soil type, and a global soil map is 
probably not considered at all in the French climate modelling so far. Had 
there been a high number of sites or only Central  European agricultural 
plots,  a correlation would have been detected very likely. Consequently, 
using a multitude of soil moisture measurements from space, McColl et al. 
(2017) did confirm the effect of the sand content for drying (albeit only for  
the radar-accessible top layer and with many gaps over Europe).

The  issue  of  soil  properties  generally  being  neglected  in  earth  system 
models has also been pointed out by Fatichi et al. (2020). Albeit there are 
some teams working on integrating this information into their modelling it 
will probably take a decade until we advance from lab testing to regular 
consideration in operational soil moisture products.

Looking at the individual correlation and optimum scale maps produced for 
this study, some observations have already been interpreted in the results 
section, namely: the frequently observed absence of higher correlations in 
mountainous areas where at the same time short optimum SPEI scales fit 
the assumption of  shallow soils  on rocks whose water content depends 
largely  on  the  actual  meteorological  conditions,  the  patchiness  of  the 
optimum scale map for LISFLOOD (Fig. 11) as probable result of  hydro-
graph-only optimizing parameter calibrations in river gauge catchments, or 
the comparably coarse GLDAS-Noah grid and the reanalysis data used as 
possible  reasons  for  the  noisy  appearance  and  deletion  of  smaller 
landscape structures.

Comparing the key characteristics of the soil moisture products covering all 
of  Europe  (Table 1)  LISFLOOD  drops  out  with  exceptionally  low 
correlations; this model follows other priorities than realistically capturing 
soil moisture dynamics. Among the other three data sources we can see 
longer SPEI scales preferred for deeper soils which makes sense because 
soil storage hysteresis can be expected to increase with profile depth.
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Table 1: Key characteristics of the European soil moisture products
Data source Soil depth Median opt. r Optimal scales
ERA5 1.0 m 0.539 1–4 months

LISFLOOD 0.5 m 0.410 very diverse

GLDAS-Noah 2.0 m 0.562 around 6 months

SoMo.ml-EU 0.5 m 0.555 2 mon. dominant

The  UFZ  mHM  was  not  included  in  Table 1  because  of  its  limited 
geographical  focus,  but  with  a  considered  soil  depth  of  1.8 m  the 
appearance of many longer time scales in Fig. 5 (the geometric mean may 
also be close to 6 months) fits the picture.

Taking these observations together: Can the initial idea for a SPEI-based 
soil drought mapping be further pursued given the diverse limitations of 
the existing products despite their much higher computational effort? Our 
answer would be a cautious yes, but the originally intended route to just 
apply one of the optimal scale maps would not reach the target. If the best 
openly  available  soil  moisture  products  correlate  to  the  real  world  soil  
moisture with rmodel ≈ 0.63 (Muñoz-Sabater et al. 2021 for ERA5-Land over 
Europe; mind that the higher numbers of Beck et al. 2021 were limited to 
the  top  5 cm  layer),  and  the  mimicking  of  these  products  by  SPEIs  of 
different scales works with  rSPEI ≈ 0.55 (cf.  Table 1),  no better correlation 
between this potential SPEI product and the real world soil moisture than 
rmodel · rSPEI ≈ 0.35 can be expected. Before designing a SPEI approximation to 
the continental root-zone soil moisture there must be a reference data set 
of the latter derived from actual measurements as intelligently as possible.

This draws our attention to the SoMo.ml-EU data (O et al.  2022) which 
attempted to provide just that with the help of machine learning, namely 
long short-term memory (LSTM) modelling. A closer look in the O et al.  
(2022) publication and its predecessor (O. and Orth 2021 for SoMo.ml, a 
coarser  global  soil  moisture  data  set)  reveals  that  not  all  links  to  the 
“classical” reanalysis products were cut: The limited representativeness of 
point measurements within a grid cell was “balanced” by scaling these to 
the means and variabilities of the ERA5 soil moisture at the corresponding 
grid  cells.  Furthermore,  some  ERA5  weather  data  was  used.  Static 
predictors  included  topography,  vegetation  type  and  soil  profile 
information from the Regridded Harmonized World Soil Data Base (HWSD) 
v1.2 (Wieder et al. 2014). The inclusion of HWSD data and topography (by 
cell means and variances of elevation) is however a clear advantage to the 
land model reanalyses and may explain why some smaller mountain ranges 
in Germany can be spotted in Fig. 17. O et al. (2022) show box plots with 
median correlations of approximately 0.75 to six field measurements in the 
0–10 cm layer and 22 measurements in the 10–30 cm layer which were 
excluded from the training data.
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As impressive this may read, machine learning for continuous soil moisture 
data is just being explored, and higher quality products can be expected in 
the near future. Two very recent examples for surface soil  moisture are 
given by Skulovich and Gentine (2023) and Han et al. (2023).

Some advances  are also expectable  from the uptake of  enhanced high-
resolution  soil  data with detailed  profile   information such as  Wise30sec 
(Batjes et al. 2016) and SoilGrids (Hengl et al. 2017). These were already 
tested for two ecohydrological models in Norwegian catchments (Huang et 
al.  2022). The simulated soil  moisture series were evaluated but only in 
comparison to ERA5, GLEAM and a satellite-based product, and in all three 
cases only for the top layer (0–7 cm or 0–10 cm). Results were mixed with 
the highest correlations (0.80–0.85) observed for ERA5.

There are also developments among the reanalysis products that should be 
considered if our idea should be pursued further in the future: ECLand, the 
ECMWF Land Surface Modelling System is undergoing revision to consider 
orography and soil texture in runoff and infiltration parameterizations; first 
SM evaluations with satellite-based topsoil data were promising (Boussetta 
et al.  2021).  This  revision,  introducing also additional  soil  layers and an 
experimental root distribution formulation has however not appeared in 
the publicly downloadable ECMWF data which still uses a static four-layer 
configuration  of  2.89  m  depth.  Boussetta  et  al.  (2021)  also  advertize 
upcoming very high resolutions of 1 km for ECLand and a generally better 
integration with satellite observations.

New  directions  for  improvements  by  data   assimilation have  also  been 
proposed  for  the  Community  Land  Model  version  5  (CLM5),  the  land 
component of the Community Earth System Model version 2 (CESM2). The 
global applicability of a pilot study conducted by Strebel et al. (2022) in a 
38.5-ha forested catchment in Germany remains however questionable. A 
hybrid approach for global  hydrological  models combining deep learning 
and data assimilation was recently presented by Kraft et al. (2022). A first 
output data sample from their H2M model has been released (Kraft et al.  
2021)  but  not  considered  for  this  deliverable.  The  H2M  output  is  also 
interesting because it uses SoilGrids (Hengl et al. 2017), currently probably 
the  best  available  global  soil  data  base.  A  major  downside  is  the  low 
resolution of one degree (approx. 110 km in north–south direction).

Finally,  ensemble evaluation should be mentioned as another strategy to 
obtain better predictions. The example is given by Wang et al. (2021) who 
developed global multilayer soil moisture data for the period 1970–2016 
through ensembles  of  already existing data sets.  As  usual  for  ensemble 
data,  the result  performed better in  comparison to field measurements 
than any of the input sources.

We  conclude  that  a  realistic  spatio-temporal  image  of  European  soil 
moisture is about to emerge, and the idea of a meaningful SPEI-based soil  
moisture  index  which  is  easily  calculated  for  continental  scenario 
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projections  of  high  resolution  and  with  many  realisations  should  be 
pursued further over the next decade.
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